Suppr超能文献

微同源性介导的末端连接是线粒体DNA损伤期间双链断裂修复的主要介质。

Microhomology-mediated end joining is the principal mediator of double-strand break repair during mitochondrial DNA lesions.

作者信息

Tadi Satish Kumar, Sebastian Robin, Dahal Sumedha, Babu Ravi K, Choudhary Bibha, Raghavan Sathees C

机构信息

Department of Biochemistry, Indian Institute of Science, Bangalore 560 012, India.

Institute of Bioinformatics and Applied Biotechnology, Bangalore 560 100, India.

出版信息

Mol Biol Cell. 2016 Jan 15;27(2):223-35. doi: 10.1091/mbc.E15-05-0260. Epub 2015 Nov 25.

Abstract

Mitochondrial DNA (mtDNA) deletions are associated with various mitochondrial disorders. The deletions identified in humans are flanked by short, directly repeated mitochondrial DNA sequences; however, the mechanism of such DNA rearrangements has yet to be elucidated. In contrast to nuclear DNA (nDNA), mtDNA is more exposed to oxidative damage, which may result in double-strand breaks (DSBs). Although DSB repair in nDNA is well studied, repair mechanisms in mitochondria are not characterized. In the present study, we investigate the mechanisms of DSB repair in mitochondria using in vitro and ex vivo assays. Whereas classical NHEJ (C-NHEJ) is undetectable, microhomology-mediated alternative NHEJ efficiently repairs DSBs in mitochondria. Of interest, robust microhomology-mediated end joining (MMEJ) was observed with DNA substrates bearing 5-, 8-, 10-, 13-, 16-, 19-, and 22-nt microhomology. Furthermore, MMEJ efficiency was enhanced with an increase in the length of homology. Western blotting, immunoprecipitation, and protein inhibition assays suggest the involvement of CtIP, FEN1, MRE11, and PARP1 in mitochondrial MMEJ. Knockdown studies, in conjunction with other experiments, demonstrated that DNA ligase III, but not ligase IV or ligase I, is primarily responsible for the final sealing of DSBs during mitochondrial MMEJ. These observations highlight the central role of MMEJ in maintenance of mammalian mitochondrial genome integrity and is likely relevant for deletions observed in many human mitochondrial disorders.

摘要

线粒体DNA(mtDNA)缺失与多种线粒体疾病相关。在人类中鉴定出的缺失片段两侧是短的、直接重复的线粒体DNA序列;然而,这种DNA重排的机制尚未阐明。与核DNA(nDNA)不同,mtDNA更容易受到氧化损伤,这可能导致双链断裂(DSB)。虽然对nDNA中的DSB修复已有充分研究,但线粒体中的修复机制尚未明确。在本研究中,我们使用体外和离体实验研究线粒体中DSB修复的机制。经典的非同源末端连接(C-NHEJ)检测不到,而微同源性介导的替代NHEJ能有效修复线粒体中的DSB。有趣的是,在带有5、8、10、13、16、19和22个核苷酸微同源性的DNA底物上观察到了强大的微同源性介导的末端连接(MMEJ)。此外,随着同源长度的增加,MMEJ效率提高。蛋白质印迹、免疫沉淀和蛋白质抑制实验表明CtIP、FEN1、MRE11和PARP1参与了线粒体MMEJ。基因敲低研究与其他实验相结合,证明DNA连接酶III而非连接酶IV或连接酶I主要负责线粒体MMEJ过程中DSB的最终封闭。这些观察结果突出了MMEJ在维持哺乳动物线粒体基因组完整性中的核心作用,并且可能与许多人类线粒体疾病中观察到的缺失有关。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ac1/4713127/205dcacda302/223fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验