Suppr超能文献

雄性Fischer F344大鼠骨骼抗骨折能力的年龄相关变化。

Age-related changes in the fracture resistance of male Fischer F344 rat bone.

作者信息

Uppuganti Sasidhar, Granke Mathilde, Makowski Alexander J, Does Mark D, Nyman Jeffry S

机构信息

Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN 37212, United States; Department of Orthopaedic Surgery & Rehabilitation, Vanderbilt University Medical Center, Nashville, TN 37232, United States; Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN 37232, United States.

Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN 37212, United States; Department of Orthopaedic Surgery & Rehabilitation, Vanderbilt University Medical Center, Nashville, TN 37232, United States; Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN 37232, United States; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, United States.

出版信息

Bone. 2016 Feb;83:220-232. doi: 10.1016/j.bone.2015.11.009. Epub 2015 Nov 22.

Abstract

In addition to the loss in bone volume that occurs with age, there is a decline in material properties. To test new therapies or diagnostic tools that target such properties as material strength and toughness, a pre-clinical model of aging would be useful in which changes in bone are similar to those that occur with aging in humans. Toward that end, we hypothesized that similar to human bone, the estimated toughness and material strength of cortical bone at the apparent-level decreases with age in the male Fischer F344 rat. In addition, we tested whether the known decline in trabecular architecture in rats translated to an age-related decrease in vertebra (VB) strength and whether non-X-ray techniques could quantify tissue changes at micron and sub-micron length scales. Bones were harvested from 6-, 12-, and 24-month (mo.) old rats (n=12 per age). Despite a loss in trabecular bone with age, VB compressive strength was similar among the age groups. Similarly, whole-bone strength (peak force) in bending was maintained (femur) or increased (radius) with aging. There was though an age-related decrease in post-yield toughness (radius) and bending strength (femur). The ability to resist crack initiation was actually higher for the 12-mo. and 24-mo. than for 6-mo. rats (notch femur), but the estimated work to propagate the crack was less for the aged bone. For the femur diaphysis region, porosity increased while bound water decreased with age. For the radius diaphysis, there was an age-related increase in non-enzymatic and mature enzymatic collagen crosslinks. Raman spectroscopy analysis of embedded cross-sections of the tibia mid-shaft detected an increase in carbonate subsitution with advanced aging for both inner and outer tissue.

摘要

除了随着年龄增长出现的骨量流失外,材料特性也会下降。为了测试针对材料强度和韧性等特性的新疗法或诊断工具,一种老化的临床前模型将很有用,其中骨骼的变化与人类衰老时发生的变化相似。为此,我们假设,与人类骨骼类似,雄性Fischer F344大鼠皮质骨在表观水平的估计韧性和材料强度会随着年龄增长而下降。此外,我们测试了大鼠小梁结构已知的下降是否转化为与年龄相关的椎骨(VB)强度下降,以及非X射线技术是否可以在微米和亚微米长度尺度上量化组织变化。从6个月、12个月和24个月大的大鼠(每个年龄n = 12)身上采集骨骼。尽管随着年龄增长小梁骨有所流失,但各年龄组之间的VB抗压强度相似。同样,随着年龄增长,弯曲时的全骨强度(峰值力)在股骨中保持不变或在桡骨中增加。不过,屈服后韧性(桡骨)和弯曲强度(股骨)会随着年龄增长而下降。12个月和24个月大的大鼠抵抗裂纹萌生的能力实际上比6个月大的大鼠(带缺口股骨)更高,但老化骨骼扩展裂纹的估计功较小。对于股骨干区域,孔隙率随着年龄增长而增加,而结合水则减少。对于桡骨干,非酶促和成熟酶促胶原交联随着年龄增长而增加。对胫骨干中段嵌入横截面的拉曼光谱分析检测到,随着衰老的进展,内外组织的碳酸盐取代均增加。

相似文献

1
Age-related changes in the fracture resistance of male Fischer F344 rat bone.
Bone. 2016 Feb;83:220-232. doi: 10.1016/j.bone.2015.11.009. Epub 2015 Nov 22.
3
Low bone toughness in the TallyHO model of juvenile type 2 diabetes does not worsen with age.
Bone. 2018 May;110:204-214. doi: 10.1016/j.bone.2018.02.005. Epub 2018 Feb 10.
4
The loss of activating transcription factor 4 (ATF4) reduces bone toughness and fracture toughness.
Bone. 2014 May;62:1-9. doi: 10.1016/j.bone.2014.01.021. Epub 2014 Feb 7.
5
Changes in the Fracture Resistance of Bone with the Progression of Type 2 Diabetes in the ZDSD Rat.
Calcif Tissue Int. 2016 Sep;99(3):289-301. doi: 10.1007/s00223-016-0149-z. Epub 2016 May 21.
6
Identifying Novel Clinical Surrogates to Assess Human Bone Fracture Toughness.
J Bone Miner Res. 2015 Jul;30(7):1290-300. doi: 10.1002/jbmr.2452. Epub 2015 Jun 8.
7
Alterations of bone microstructure and strength in end-stage renal failure.
Osteoporos Int. 2013 May;24(5):1721-32. doi: 10.1007/s00198-012-2133-4. Epub 2012 Oct 26.
9
Partial removal of pore and loosely bound water by low-energy drying decreases cortical bone toughness in young and old donors.
J Mech Behav Biomed Mater. 2013 Jun;22:136-45. doi: 10.1016/j.jmbbm.2012.08.013. Epub 2012 Oct 17.

引用本文的文献

1
Ageing-Related Changes in Ultrastructural Bone Matrix Composition and Osteocyte Mechanosensitivity.
Curr Osteoporos Rep. 2025 Aug 12;23(1):35. doi: 10.1007/s11914-025-00927-0.
2
A myostatin inhibitory antibody combined with insulin, partially rescues the musculoskeletal phenotype of female insulin-deficient diabetic mice.
Front Endocrinol (Lausanne). 2025 Jun 12;16:1558740. doi: 10.3389/fendo.2025.1558740. eCollection 2025.
3
In vivo glycation-interplay between oxidant and carbonyl stress in bone.
JBMR Plus. 2024 Aug 8;8(11):ziae110. doi: 10.1093/jbmrpl/ziae110. eCollection 2024 Nov.
4
Diabetes disrupts osteometric and trabecular morphometric parameters in the Zucker Diabetic Sprague-Dawley rat femur.
Anat Cell Biol. 2024 Jun 30;57(2):294-304. doi: 10.5115/acb.24.008. Epub 2024 Apr 23.
6
Assessment of spatially offset Raman spectroscopy to detect differences in bone matrix quality.
Spectrochim Acta A Mol Biomol Spectrosc. 2023 Dec 15;303:123240. doi: 10.1016/j.saa.2023.123240. Epub 2023 Aug 10.
7
Advanced glycation and glycoxidation end products in bone.
Bone. 2023 Nov;176:116880. doi: 10.1016/j.bone.2023.116880. Epub 2023 Aug 12.
8
Toward the use of MRI measurements of bound and pore water in fracture risk assessment.
Bone. 2023 Nov;176:116863. doi: 10.1016/j.bone.2023.116863. Epub 2023 Jul 30.
9
Near-infrared spectroscopy for structural bone assessment.
Bone Jt Open. 2023 Apr 7;4(4):250-261. doi: 10.1302/2633-1462.44.BJO-2023-0014.R1.
10
Causative or associative: A critical review of the role of advanced glycation end-products in bone fragility.
Bone. 2022 Oct;163:116485. doi: 10.1016/j.bone.2022.116485. Epub 2022 Jul 4.

本文引用的文献

1
In Vivo Quantitative MR Imaging of Bound and Pore Water in Cortical Bone.
Radiology. 2015 Dec;277(3):927. doi: 10.1148/radiol.2015154032.
2
Sex effects on short-term complications after hip fracture: a prospective cohort study.
Clin Interv Aging. 2015 Aug 5;10:1259-66. doi: 10.2147/CIA.S80100. eCollection 2015.
3
Regional Heterogeneity in the Configuration of the Intracortical Canals of the Femoral Shaft.
Calcif Tissue Int. 2015 Oct;97(4):327-35. doi: 10.1007/s00223-015-0014-5. Epub 2015 Jun 7.
4
Predicting mouse vertebra strength with micro-computed tomography-derived finite element analysis.
Bonekey Rep. 2015 Apr 22;4:664. doi: 10.1038/bonekey.2015.31. eCollection 2015.
5
The Role of Water Compartments in the Material Properties of Cortical Bone.
Calcif Tissue Int. 2015 Sep;97(3):292-307. doi: 10.1007/s00223-015-9977-5. Epub 2015 Mar 18.
6
Identifying Novel Clinical Surrogates to Assess Human Bone Fracture Toughness.
J Bone Miner Res. 2015 Jul;30(7):1290-300. doi: 10.1002/jbmr.2452. Epub 2015 Jun 8.
8
Changes in compact bone microstructure of rats subchronically exposed to cadmium.
Acta Vet Scand. 2014 Sep 24;56(1):64. doi: 10.1186/s13028-014-0064-0.
9
Insights into reference point indentation involving human cortical bone: sensitivity to tissue anisotropy and mechanical behavior.
J Mech Behav Biomed Mater. 2014 Sep;37:174-85. doi: 10.1016/j.jmbbm.2014.05.016. Epub 2014 May 27.
10
Variability of in vivo reference point indentation in skeletally mature inbred rats.
J Biomech. 2014 Jul 18;47(10):2504-7. doi: 10.1016/j.jbiomech.2014.04.035. Epub 2014 May 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验