Suppr超能文献

使用分层数据进行预测:宫颈癌自动检测的应用

Prediction using hierarchical data: Applications for automated detection of cervical cancer.

作者信息

Yamal Jose-Miguel, Guillaud Martial, Atkinson E Neely, Follen Michele, MacAulay Calum, Cantor Scott B, Cox Dennis D

机构信息

Department of Biostatistics, The University of Texas School of Public Health, 1200 Herman Pressler, Suite W-928, Houston, TX 77030, USA.

Department of Integrative Oncology, British Columbia Cancer Research Centre, 675 West 10th Ave, Vancouver, BC, V5Z 1L3, Canada.

出版信息

Stat Anal Data Min. 2015 Apr;8(2):65-74. doi: 10.1002/sam.11261. Epub 2015 Apr 8.

Abstract

Although the Papanicolaou smear has been successful in decreasing cervical cancer incidence in the developed world, there exist many challenges for implementation in the developing world. Quantitative cytology, a semi-automated method that quantifies cellular image features, is a promising screening test candidate. The nested structure of its data (measurements of multiple cells within a patient) provides challenges to the usual classification problem. Here we perform a comparative study of three main approaches for problems with this general data structure: a) extract patient-level features from the cell-level data; b) use a statistical model that accounts for the hierarchical data structure; and c) classify at the cellular level and use an ad hoc approach to classify at the patient level. We apply these methods to a dataset of 1,728 patients, with an average of 2,600 cells collected per patient and 133 features measured per cell, predicting whether a patient had a positive biopsy result. The best approach we found was to classify at the cellular level and count the number of cells that had a posterior probability greater than a threshold value, with estimated 61% sensitivity and 89% specificity on independent data. Recent statistical learning developments allowed us to achieve high accuracy.

摘要

尽管巴氏涂片检查在发达国家成功降低了宫颈癌发病率,但在发展中国家实施仍面临诸多挑战。定量细胞学是一种对细胞图像特征进行量化的半自动方法,是一种很有前景的筛查测试手段。其数据的嵌套结构(对患者体内多个细胞的测量)给常见的分类问题带来了挑战。在此,我们针对具有这种一般数据结构的问题,对三种主要方法进行了比较研究:a)从细胞水平数据中提取患者水平特征;b)使用考虑分层数据结构的统计模型;c)在细胞水平进行分类,并采用一种特殊方法在患者水平进行分类。我们将这些方法应用于一个包含1728名患者的数据集,每位患者平均收集2600个细胞,每个细胞测量133个特征,预测患者活检结果是否为阳性。我们发现最佳方法是在细胞水平进行分类,并计算后验概率大于阈值的细胞数量,在独立数据上估计灵敏度为61%,特异性为89%。近期统计学习的发展使我们能够实现高精度。

相似文献

1
Prediction using hierarchical data: Applications for automated detection of cervical cancer.
Stat Anal Data Min. 2015 Apr;8(2):65-74. doi: 10.1002/sam.11261. Epub 2015 Apr 8.
2
A review of image analysis and machine learning techniques for automated cervical cancer screening from pap-smear images.
Comput Methods Programs Biomed. 2018 Oct;164:15-22. doi: 10.1016/j.cmpb.2018.05.034. Epub 2018 Jun 26.
3
Deep Convolution Neural Network for Malignancy Detection and Classification in Microscopic Uterine Cervix Cell Images.
Asian Pac J Cancer Prev. 2019 Nov 1;20(11):3447-3456. doi: 10.31557/APJCP.2019.20.11.3447.
5
Automated Pap Smear Cervical Cancer Screening Using Deep Learning.
Annu Int Conf IEEE Eng Med Biol Soc. 2019 Jul;2019:7044-7048. doi: 10.1109/EMBC.2019.8856369.
6
7
8
DeepPap: Deep Convolutional Networks for Cervical Cell Classification.
IEEE J Biomed Health Inform. 2017 Nov;21(6):1633-1643. doi: 10.1109/JBHI.2017.2705583. Epub 2017 May 19.

引用本文的文献

1
Automated analysis of digital medical images in cervical cancer screening: A systematic review.
medRxiv. 2024 Sep 27:2024.09.27.24314466. doi: 10.1101/2024.09.27.24314466.
2
Triage Value of Cervical Exfoliated Cell DNA Ploidy Analysis in Cervical High-Risk Human Papillomavirus-Positive Women.
J Low Genit Tract Dis. 2023 Oct 1;27(4):331-336. doi: 10.1097/LGT.0000000000000757. Epub 2023 Aug 16.
3
Cervical Cancer Detection Techniques: A Chronological Review.
Diagnostics (Basel). 2023 May 17;13(10):1763. doi: 10.3390/diagnostics13101763.

本文引用的文献

2
Screening trial of human papillomavirus for early detection of cervical cancer in Santiago, Chile.
Int J Cancer. 2013 Feb 15;132(4):916-23. doi: 10.1002/ijc.27662. Epub 2012 Jun 26.
4
Penalized classification using Fisher's linear discriminant.
J R Stat Soc Series B Stat Methodol. 2011 Nov;73(5):753-772. doi: 10.1111/j.1467-9868.2011.00783.x.
5
Classifying tissue samples from measurements on cells with within-class tissue sample heterogeneity.
Biostatistics. 2011 Oct;12(4):695-709. doi: 10.1093/biostatistics/kxr010. Epub 2011 Jun 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验