Suppr超能文献

基于人工神经网络的玻璃真空管太阳能热水器集热率和热损系数测量软件

Artificial Neural Networks-Based Software for Measuring Heat Collection Rate and Heat Loss Coefficient of Water-in-Glass Evacuated Tube Solar Water Heaters.

作者信息

Liu Zhijian, Liu Kejun, Li Hao, Zhang Xinyu, Jin Guangya, Cheng Kewei

机构信息

Department of Power Engineering, School of Energy, Power and Mechanical Engineering, North China Electric Power University, Baoding, Hebei, 071003, PR China.

College of Software Engineering, Sichuan University, Chengdu, Sichuan, 610064, PR China.

出版信息

PLoS One. 2015 Dec 1;10(12):e0143624. doi: 10.1371/journal.pone.0143624. eCollection 2015.

Abstract

Measurements of heat collection rate and heat loss coefficient are crucial for the evaluation of in service water-in-glass evacuated tube solar water heaters. However, conventional measurement requires expensive detection devices and undergoes a series of complicated procedures. To simplify the measurement and reduce the cost, software based on artificial neural networks for measuring heat collection rate and heat loss coefficient of water-in-glass evacuated tube solar water heaters was developed. Using multilayer feed-forward neural networks with back-propagation algorithm, we developed and tested our program on the basis of 915 measured samples of water-in-glass evacuated tube solar water heaters. This artificial neural networks-based software program automatically obtained accurate heat collection rate and heat loss coefficient using simply "portable test instruments" acquired parameters, including tube length, number of tubes, tube center distance, heat water mass in tank, collector area, angle between tubes and ground and final temperature. Our results show that this software (on both personal computer and Android platforms) is efficient and convenient to predict the heat collection rate and heat loss coefficient due to it slow root mean square errors in prediction. The software now can be downloaded from http://t.cn/RLPKF08.

摘要

测量集热率和热损系数对于在用的玻璃真空管太阳能热水器的评估至关重要。然而,传统测量需要昂贵的检测设备且要经历一系列复杂的程序。为了简化测量并降低成本,开发了基于人工神经网络的用于测量玻璃真空管太阳能热水器集热率和热损系数的软件。使用带有反向传播算法的多层前馈神经网络,我们基于915个玻璃真空管太阳能热水器的测量样本开发并测试了我们的程序。这个基于人工神经网络的软件程序使用简单的“便携式测试仪器”获取的参数(包括管长、管数、管中心距、水箱中的热水质量、集热器面积、管与地面之间的角度以及最终温度)自动获得准确的集热率和热损系数。我们的结果表明,该软件(在个人电脑和安卓平台上)由于预测中的均方根误差较小,能够高效且方便地预测集热率和热损系数。该软件现在可从http://t.cn/RLPKF08下载。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/801d/4666653/a2e58a774cab/pone.0143624.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验