Suppr超能文献

磁共振成像头部扫描图像的颅骨剥离方法——综述

Methods on Skull Stripping of MRI Head Scan Images-a Review.

作者信息

Kalavathi P, Prasath V B Surya

机构信息

Department of Computer Science and Applications, Gandhigram Rural Institute - Deemed University, Gandhigram, Tamil Nadu, 624302, India.

Computational Imaging and VisAnalysis (CIVA) Lab, Department of Computer Science, University of Missouri-Columbia, Columbia, MO, 65211, USA.

出版信息

J Digit Imaging. 2016 Jun;29(3):365-79. doi: 10.1007/s10278-015-9847-8.

Abstract

The high resolution magnetic resonance (MR) brain images contain some non-brain tissues such as skin, fat, muscle, neck, and eye balls compared to the functional images namely positron emission tomography (PET), single photon emission computed tomography (SPECT), and functional magnetic resonance imaging (fMRI) which usually contain relatively less non-brain tissues. The presence of these non-brain tissues is considered as a major obstacle for automatic brain image segmentation and analysis techniques. Therefore, quantitative morphometric studies of MR brain images often require a preliminary processing to isolate the brain from extra-cranial or non-brain tissues, commonly referred to as skull stripping. This paper describes the available methods on skull stripping and an exploratory review of recent literature on the existing skull stripping methods.

摘要

与功能图像(即正电子发射断层扫描(PET)、单光子发射计算机断层扫描(SPECT)和功能磁共振成像(fMRI))相比,高分辨率磁共振(MR)脑图像包含一些非脑组织,如皮肤、脂肪、肌肉、颈部和眼球,而功能图像通常包含相对较少的非脑组织。这些非脑组织的存在被认为是自动脑图像分割和分析技术的主要障碍。因此,对MR脑图像进行定量形态学研究通常需要进行预处理,以将脑与颅外或非脑组织分离,这通常被称为去颅骨。本文介绍了现有的去颅骨方法,并对近期有关现有去颅骨方法的文献进行了探索性综述。

相似文献

1
Methods on Skull Stripping of MRI Head Scan Images-a Review.
J Digit Imaging. 2016 Jun;29(3):365-79. doi: 10.1007/s10278-015-9847-8.
2
Robust skull stripping using multiple MR image contrasts insensitive to pathology.
Neuroimage. 2017 Feb 1;146:132-147. doi: 10.1016/j.neuroimage.2016.11.017. Epub 2016 Nov 15.
3
An open, multi-vendor, multi-field-strength brain MR dataset and analysis of publicly available skull stripping methods agreement.
Neuroimage. 2018 Apr 15;170:482-494. doi: 10.1016/j.neuroimage.2017.08.021. Epub 2017 Aug 12.
4
Contour-based brain segmentation method for magnetic resonance imaging human head scans.
J Comput Assist Tomogr. 2013 May-Jun;37(3):353-68. doi: 10.1097/RCT.0b013e3182888256.
6
A multi-view pyramid network for skull stripping on neonatal T1-weighted MRI.
Magn Reson Imaging. 2019 Nov;63:70-79. doi: 10.1016/j.mri.2019.08.025. Epub 2019 Aug 16.
7
SynthStrip: skull-stripping for any brain image.
Neuroimage. 2022 Oct 15;260:119474. doi: 10.1016/j.neuroimage.2022.119474. Epub 2022 Jul 13.
8
RU-Net: skull stripping in rat brain MR images after ischemic stroke with rat U-Net.
BMC Med Imaging. 2023 Mar 27;23(1):44. doi: 10.1186/s12880-023-00994-8.
9
A general skull stripping of multiparametric brain MRIs using 3D convolutional neural network.
Sci Rep. 2022 Jun 27;12(1):10826. doi: 10.1038/s41598-022-14983-4.
10
Quantitative analysis of MRI-guided attenuation correction techniques in time-of-flight brain PET/MRI.
Neuroimage. 2016 Apr 15;130:123-133. doi: 10.1016/j.neuroimage.2016.01.060. Epub 2016 Feb 4.

引用本文的文献

1
HeteroMRI: Robust white matter abnormality classification across multi-scanner MRI data.
Gigascience. 2025 Jan 6;14. doi: 10.1093/gigascience/giaf092.
2
Construction of a Structurally Unbiased Brain Template with High Image Quality from MRI Scans of Saudi Adult Females.
Bioengineering (Basel). 2025 Jun 30;12(7):722. doi: 10.3390/bioengineering12070722.
3
Unsupervised skull segmentation in MR images utilizing modality translation and super-resolution.
Sci Rep. 2025 Jul 16;15(1):25828. doi: 10.1038/s41598-025-05323-3.
4
Pseudonymisation of neuroimages and data protection: .
Neuroimage Rep. 2021 Sep 15;1(4):100053. doi: 10.1016/j.ynirp.2021.100053. eCollection 2021 Dec.
5
Intracranial volume segmentation for neurodegenerative populations using multicentre FLAIR MRI.
Neuroimage Rep. 2021 Mar 11;1(1):100006. doi: 10.1016/j.ynirp.2021.100006. eCollection 2021 Mar.
7
Stacked CNN-based multichannel attention networks for Alzheimer disease detection.
Sci Rep. 2025 Feb 17;15(1):5815. doi: 10.1038/s41598-025-85703-x.
9
An intelligent magnetic resonance imagining-based multistage Alzheimer's disease classification using swish-convolutional neural networks.
Med Biol Eng Comput. 2025 Mar;63(3):885-899. doi: 10.1007/s11517-024-03237-2. Epub 2024 Nov 15.
10
Novel hippocampus-centered methodology for informative instance selection in Alzheimer's disease data.
Heliyon. 2024 Sep 19;10(19):e37552. doi: 10.1016/j.heliyon.2024.e37552. eCollection 2024 Oct 15.

本文引用的文献

1
Unsupervised Segmentation of Head Tissues from Multi-modal MR Images for EEG Source Localization.
J Digit Imaging. 2015 Aug;28(4):499-514. doi: 10.1007/s10278-014-9752-6.
2
Contour-based brain segmentation method for magnetic resonance imaging human head scans.
J Comput Assist Tomogr. 2013 May-Jun;37(3):353-68. doi: 10.1097/RCT.0b013e3182888256.
3
An accurate skull stripping method based on simplex meshes and histogram analysis for magnetic resonance images.
J Neurosci Methods. 2012;206(2):103-19. doi: 10.1016/j.jneumeth.2012.02.017. Epub 2012 Feb 23.
4
Skull stripping of neonatal brain MRI: using prior shape information with graph cuts.
J Digit Imaging. 2012 Dec;25(6):802-14. doi: 10.1007/s10278-012-9460-z.
5
Robust skull stripping of clinical glioblastoma multiforme data.
Med Image Comput Comput Assist Interv. 2011;14(Pt 3):659-66. doi: 10.1007/978-3-642-23626-6_81.
6
Robust deformable-surface-based skull-stripping for large-scale studies.
Med Image Comput Comput Assist Interv. 2011;14(Pt 3):635-42. doi: 10.1007/978-3-642-23626-6_78.
7
Learning-based meta-algorithm for MRI brain extraction.
Med Image Comput Comput Assist Interv. 2011;14(Pt 3):313-21. doi: 10.1007/978-3-642-23626-6_39.
9
BEaST: brain extraction based on nonlocal segmentation technique.
Neuroimage. 2012 Feb 1;59(3):2362-73. doi: 10.1016/j.neuroimage.2011.09.012. Epub 2011 Sep 16.
10
An automated and simple method for brain MR image extraction.
Biomed Eng Online. 2011 Sep 13;10:81. doi: 10.1186/1475-925X-10-81.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验