Suppr超能文献

用于肿瘤微环境中微小RNA调控的自组装RNA三螺旋水凝胶支架

Self-assembled RNA-triple-helix hydrogel scaffold for microRNA modulation in the tumour microenvironment.

作者信息

Conde João, Oliva Nuria, Atilano Mariana, Song Hyun Seok, Artzi Natalie

机构信息

Massachusetts Institute of Technology, Institute for Medical Engineering and Science, Harvard-MIT Division for Health Sciences and Technology, Cambridge, Massachusetts 02139, USA.

School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK.

出版信息

Nat Mater. 2016 Mar;15(3):353-63. doi: 10.1038/nmat4497. Epub 2015 Dec 7.

Abstract

The therapeutic potential of miRNA (miR) in cancer is limited by the lack of efficient delivery vehicles. Here, we show that a self-assembled dual-colour RNA-triple-helix structure comprising two miRNAs-a miR mimic (tumour suppressor miRNA) and an antagomiR (oncomiR inhibitor)-provides outstanding capability to synergistically abrogate tumours. Conjugation of RNA triple helices to dendrimers allows the formation of stable triplex nanoparticles, which form an RNA-triple-helix adhesive scaffold upon interaction with dextran aldehyde, the latter able to chemically interact and adhere to natural tissue amines in the tumour. We also show that the self-assembled RNA-triple-helix conjugates remain functional in vitro and in vivo, and that they lead to nearly 90% levels of tumour shrinkage two weeks post-gel implantation in a triple-negative breast cancer mouse model. Our findings suggest that the RNA-triple-helix hydrogels can be used as an efficient anticancer platform to locally modulate the expression of endogenous miRs in cancer.

摘要

微小RNA(miR)在癌症治疗中的潜力因缺乏有效的递送载体而受到限制。在此,我们表明,一种由两种微小RNA(一种miR模拟物(肿瘤抑制性微小RNA)和一种抗微小RNA(致癌性微小RNA抑制剂))组成的自组装双色RNA三螺旋结构具有出色的协同消除肿瘤的能力。将RNA三螺旋与树枝状聚合物结合可形成稳定的三链体纳米颗粒,该纳米颗粒在与葡聚糖醛酸相互作用时形成RNA三螺旋粘附支架,后者能够与肿瘤中的天然组织胺发生化学相互作用并粘附。我们还表明,自组装的RNA三螺旋缀合物在体外和体内均保持功能,并且在三阴性乳腺癌小鼠模型中,凝胶植入两周后,它们可使肿瘤缩小近90%。我们的研究结果表明,RNA三螺旋水凝胶可用作高效的抗癌平台,以局部调节癌症中内源性微小RNA的表达。

相似文献

1
Self-assembled RNA-triple-helix hydrogel scaffold for microRNA modulation in the tumour microenvironment.
Nat Mater. 2016 Mar;15(3):353-63. doi: 10.1038/nmat4497. Epub 2015 Dec 7.
2
3
Hyaluronic acid-chitosan nanoparticles for co-delivery of MiR-34a and doxorubicin in therapy against triple negative breast cancer.
Biomaterials. 2014 May;35(14):4333-44. doi: 10.1016/j.biomaterials.2014.02.006. Epub 2014 Feb 22.
4
microRNA-761 induces aggressive phenotypes in triple-negative breast cancer cells by repressing TRIM29 expression.
Cell Oncol (Dordr). 2017 Apr;40(2):157-166. doi: 10.1007/s13402-016-0312-6. Epub 2017 Jan 4.
6
Systemic Delivery of Anti-miRNA for Suppression of Triple Negative Breast Cancer Utilizing RNA Nanotechnology.
ACS Nano. 2015 Oct 27;9(10):9731-40. doi: 10.1021/acsnano.5b02471. Epub 2015 Sep 21.
8
Deregulated microRNAs in triple-negative breast cancer revealed by deep sequencing.
Mol Cancer. 2015 Feb 10;14:36. doi: 10.1186/s12943-015-0301-9.
9
Triplex-forming MicroRNAs form stable complexes with HIV-1 provirus and inhibit its replication.
Appl Immunohistochem Mol Morphol. 2010 Dec;18(6):532-45. doi: 10.1097/PAI.0b013e3181e1ef6a.

引用本文的文献

2
MicroRNA-Based Delivery Systems for Chronic Neuropathic Pain Treatment in Dorsal Root Ganglion.
Pharmaceutics. 2025 Jul 18;17(7):930. doi: 10.3390/pharmaceutics17070930.
3
Hydrogel Conjugation: Engineering of Hydrogels for Drug Delivery.
Pharmaceutics. 2025 Jul 10;17(7):897. doi: 10.3390/pharmaceutics17070897.
4
Bright and pH-sensitive Baby Spinach aptamer with RNA triplex fusion.
Nucleic Acids Res. 2025 Jun 6;53(11). doi: 10.1093/nar/gkaf151.
5
Blueprints for Better Drugs: The Structural Revolution in Nanomedicine.
ACS Nano. 2025 May 27;19(20):18889-18901. doi: 10.1021/acsnano.5c06380. Epub 2025 May 13.
6
MicroRNA-targeted nanoparticle delivery systems for cancer therapy: current status and future prospects.
Nanomedicine (Lond). 2025 May;20(10):1181-1194. doi: 10.1080/17435889.2025.2492542. Epub 2025 Apr 15.
7
Hydrogels as Suitable miRNA Delivery Systems: A Review.
Polymers (Basel). 2025 Mar 28;17(7):915. doi: 10.3390/polym17070915.
10
Hybrid Nanoparticle-Hydrogel Systems for Drug Delivery Depots and Other Biomedical Applications.
ACS Nano. 2024 Aug 27;18(34):22780-22792. doi: 10.1021/acsnano.4c06888. Epub 2024 Aug 14.

本文引用的文献

1
Systemic Delivery of Anti-miRNA for Suppression of Triple Negative Breast Cancer Utilizing RNA Nanotechnology.
ACS Nano. 2015 Oct 27;9(10):9731-40. doi: 10.1021/acsnano.5b02471. Epub 2015 Sep 21.
2
Implantable hydrogel embedded dark-gold nanoswitch as a theranostic probe to sense and overcome cancer multidrug resistance.
Proc Natl Acad Sci U S A. 2015 Mar 17;112(11):E1278-87. doi: 10.1073/pnas.1421229112. Epub 2015 Mar 2.
3
4
MicroRNA silencing for cancer therapy targeted to the tumour microenvironment.
Nature. 2015 Feb 5;518(7537):107-10. doi: 10.1038/nature13905. Epub 2014 Nov 17.
5
Target-responsive DNA/RNA nanomaterials for microRNA sensing and inhibition: the jack-of-all-trades in cancer nanotheranostics?
Adv Drug Deliv Rev. 2015 Jan;81:169-83. doi: 10.1016/j.addr.2014.09.003. Epub 2014 Sep 16.
6
Hydrogel doped with nanoparticles for local sustained release of siRNA in breast cancer.
Adv Healthc Mater. 2015 Jan 28;4(2):271-80. doi: 10.1002/adhm.201400235. Epub 2014 Aug 11.
7
Regulation of microRNA biogenesis.
Nat Rev Mol Cell Biol. 2014 Aug;15(8):509-24. doi: 10.1038/nrm3838. Epub 2014 Jul 16.
8
Non-viral vectors for gene-based therapy.
Nat Rev Genet. 2014 Aug;15(8):541-55. doi: 10.1038/nrg3763. Epub 2014 Jul 15.
9
Therapeutic targeting of microRNAs: current status and future challenges.
Nat Rev Drug Discov. 2014 Aug;13(8):622-38. doi: 10.1038/nrd4359. Epub 2014 Jul 11.
10
Endocytic mechanisms of graphene oxide nanosheets in osteoblasts, hepatocytes and macrophages.
ACS Appl Mater Interfaces. 2014 Aug 27;6(16):13697-706. doi: 10.1021/am5031598. Epub 2014 Jul 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验