Suppr超能文献

通过时域 X 射线光电子能谱和俄歇电子能谱监测超快化学动力学。

Monitoring Ultrafast Chemical Dynamics by Time-Domain X-ray Photo- and Auger-Electron Spectroscopy.

机构信息

Chemical Sciences Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States.

PULSE Institute, SLAC National Accelerator Laboratory , Menlo Park, California 94025, United States.

出版信息

Acc Chem Res. 2016 Jan 19;49(1):138-45. doi: 10.1021/acs.accounts.5b00361. Epub 2015 Dec 7.

Abstract

The directed flow of charge and energy is at the heart of all chemical processes. Extraordinary efforts are underway to monitor and understand the concerted motion of electrons and nuclei with ever increasing spatial and temporal sensitivity. The element specificity, chemical sensitivity, and temporal resolution of ultrafast X-ray spectroscopy techniques hold great promise to provide new insight into the fundamental interactions underlying chemical dynamics in systems ranging from isolated molecules to application-like devices. Here, we focus on the potential of ultrafast X-ray spectroscopy techniques based on the detection of photo- and Auger electrons to provide new fundamental insight into photochemical processes of systems with various degrees of complexity. Isolated nucleobases provide an excellent testing ground for our most fundamental understanding of intramolecular coupling between electrons and nuclei beyond the traditionally applied Born-Oppenheimer approximation. Ultrafast electronic relaxation dynamics enabled by the breakdown of this approximation is the major component of the nucleobase photoprotection mechanisms. Transient X-ray induced Auger electron spectroscopy on photoexcited thymine molecules provides atomic-site specific details of the extremely efficient coupling that converts potentially bond changing ultraviolet photon energy into benign heat. In particular, the time-dependent spectral shift of a specific Auger band is sensitive to the length of a single bond within the molecule. The X-ray induced Auger transients show evidence for an electronic transition out of the initially excited state within only ∼200 fs in contrast to theoretically predicted picosecond population trapping behind a reaction barrier. Photoinduced charge transfer dynamics between transition metal complexes and semiconductor nanostructures are of central importance for many emerging energy and climate relevant technologies. Numerous demonstrations of photovoltaic and photocatalytic activity have been performed based on the combination of strong light absorption in dye molecules with charge separation and transport in adjacent semiconductor nanostructures. However, a fundamental understanding of the enabling and limiting dynamics on critical atomic length- and time scales is often still lacking. Femtosecond time-resolved X-ray photoelectron spectroscopy is employed to gain a better understanding of a short-lived intermediate that may be linked to the unexpectedly limited performance of ZnO based dye-sensitized solar cells by delaying the generation of free charge carriers. The transient spectra strongly suggest that photoexcited dye molecules attached to ZnO nanocrystals inject their charges into the substrate within less than 1 ps but the electrons are then temporarily trapped at the surface of the semiconductor in direct vicinity of the injecting molecules. The experiments are extended to monitor the electronic response of the semiconductor substrate to the collective injection from a monolayer of dye molecules and the subsequent electron-ion recombination dynamics. The results indicate some qualitative similarities but quantitative differences between the recombination dynamics at molecule-semiconductor interfaces and previously studied bulk-surface electron-hole recombination dynamics in photoexcited semiconductors.

摘要

电荷和能量的定向流动是所有化学过程的核心。人们正在努力不懈地监测和理解电子和原子核的协同运动,以不断提高空间和时间的灵敏度。超快 X 射线光谱技术的元素特异性、化学敏感性和时间分辨率有望为从孤立分子到类似应用的设备的系统中化学动力学的基本相互作用提供新的见解。在这里,我们专注于基于光电子和俄歇电子检测的超快 X 射线光谱技术的潜力,为具有不同复杂程度的系统的光化学过程提供新的基本见解。孤立的核碱基为我们对超越传统应用的 Born-Oppenheimer 近似的电子和原子核之间的分子内耦合的最基本理解提供了极好的试验场。超快电子弛豫动力学是核碱基光保护机制的主要组成部分,它打破了这种近似。在光激发的胸腺嘧啶分子上进行的瞬态 X 射线诱导俄歇电子光谱学提供了极其有效的耦合的原子位置特异性细节,这种耦合将潜在的键变紫外光子能量转化为良性热。特别地,特定俄歇带的时变光谱位移对分子内单个键的长度敏感。X 射线诱导的俄歇瞬变表明,与理论预测的反应势垒后皮秒级的电子态囚禁相反,最初激发态的电子跃迁在 200fs 内发生。在许多新兴的能源和气候相关技术中,过渡金属配合物和半导体纳米结构之间的光致电荷转移动力学至关重要。基于染料分子的强光吸收与相邻半导体纳米结构中的电荷分离和输运相结合,已经进行了许多证明光电和光催化活性的演示。然而,在关键的原子长度和时间尺度上,对赋予活力和限制动力学的基本理解往往仍然缺乏。飞秒时间分辨 X 射线光电子能谱用于更好地理解可能与 ZnO 基染料敏化太阳能电池的性能受限有关的短暂中间体,该中间体通过延迟自由载流子的产生来延迟载流子的产生。瞬态光谱强烈表明,附着在 ZnO 纳米晶体上的光激发染料分子在不到 1ps 内将它们的电荷注入到衬底中,但电子随后暂时被半导体表面的电子陷阱困住,该表面紧邻注入分子。实验扩展到监测半导体衬底对单层染料分子的集体注入的电子响应以及随后的电子-离子复合动力学。结果表明,在分子-半导体界面处的复合动力学与在光激发半导体中先前研究的体-表面电子-空穴复合动力学之间存在一些定性相似性,但存在定量差异。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验