Suppr超能文献

生存运动神经元(SMN)缺乏不会在脊髓性肌萎缩症(SMA)患者诱导多能干细胞(iPSC)衍生的星形胶质细胞或运动神经元中引发氧化应激。

SMN deficiency does not induce oxidative stress in SMA iPSC-derived astrocytes or motor neurons.

作者信息

Patitucci Teresa N, Ebert Allison D

机构信息

Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Rd, Milwaukee, WI 53226, USA.

Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Rd, Milwaukee, WI 53226, USA

出版信息

Hum Mol Genet. 2016 Feb 1;25(3):514-23. doi: 10.1093/hmg/ddv489. Epub 2015 Dec 7.

Abstract

Spinal muscular atrophy (SMA) is a genetic disorder characterized by loss of motor neurons in the spinal cord leading to muscle atrophy and death. Although motor neurons (MNs) are the most obviously affected cells in SMA, recent evidence suggest dysfunction in multiple cell types. Astrocytes are a crucial component of the motor circuit and are intimately involved with MN health and maintenance. We have previously shown that SMA astrocytes are altered both morphologically and functionally early in disease progression, though it is unclear what causes astrocytes to become reactive. Oxidative stress is a common feature among neurodegenerative diseases. Oxidative stress can both induce apoptosis in neurons and can cause astrocytes to become reactive, which are features observed in the SMA induced pluripotent stem cell (iPSC) cultures. Therefore, we asked if oxidative stress contributes to SMA astrocyte pathology. We examined mitochondrial bioenergetics, transcript and protein levels of oxidative and anti-oxidant factors, and reactive oxygen species (ROS) production and found little evidence of oxidative stress. We did observe a significant increase in endogenous catalase expression in SMA iPSCs. While catalase knockdown in SMA iPSCs increased ROS production above basal levels, levels of ROS remained lower than in controls, further arguing against robust oxidative stress in this system. Viral delivery of survival motor neuron (SMN) reversed astrocyte activation and restored catalase levels to normal, without changing mitochondrial respiration or expression of oxidative stress markers. Taken together, these data indicate that SMN deficiency induces astrocyte reactivity, but does not do so through an oxidative stress-mediated process.

摘要

脊髓性肌萎缩症(SMA)是一种遗传性疾病,其特征是脊髓中的运动神经元丧失,导致肌肉萎缩和死亡。尽管运动神经元(MNs)是SMA中最明显受影响的细胞,但最近的证据表明多种细胞类型存在功能障碍。星形胶质细胞是运动回路的关键组成部分,与MN的健康和维持密切相关。我们之前已经表明,在疾病进展早期,SMA星形胶质细胞在形态和功能上都会发生改变,不过尚不清楚是什么导致星形胶质细胞发生反应性变化。氧化应激是神经退行性疾病的一个共同特征。氧化应激既能诱导神经元凋亡,又能使星形胶质细胞变得具有反应性,这是在SMA诱导多能干细胞(iPSC)培养物中观察到的特征。因此,我们询问氧化应激是否导致SMA星形胶质细胞病变。我们检测了线粒体生物能量学、氧化和抗氧化因子的转录本和蛋白质水平以及活性氧(ROS)的产生,几乎没有发现氧化应激的证据。我们确实观察到SMA iPSC中内源性过氧化氢酶表达显著增加。虽然在SMA iPSC中敲低过氧化氢酶会使ROS产生高于基础水平,但ROS水平仍低于对照组,这进一步证明该系统中不存在强烈的氧化应激。通过病毒递送存活运动神经元(SMN)可逆转星形胶质细胞的激活,并使过氧化氢酶水平恢复正常,而不会改变线粒体呼吸或氧化应激标志物的表达。综上所述,这些数据表明SMN缺乏会诱导星形胶质细胞反应性,但不是通过氧化应激介导的过程。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验