Muranaka Ligia Segatto, Rütgers Mark, Bujaldon Sandrine, Heublein Anja, Geimer Stefan, Wollman Francis-André, Schroda Michael
Molekulare Biotechnologie und Systembiologie, Technische Universität Kaiserslautern, D-67663 Kaiserslautern, Germany (L.S.M., M.R., M.S.);Laboratoire de Physiologie Membranaire et Moléculaire du Chloroplaste, Institut de Biologie Physico-Chimique, Unité Mixte de Recherche Centre National de la Recherche Scientifique/Université Pierre et Marie Curie, 7141 Paris, France (S.B., F.-A.W.); andZellbiologie/Elektronenmikroskopie, Universität Bayreuth, D-95440 Bayreuth, Germany (A.H., S.G.).
Molekulare Biotechnologie und Systembiologie, Technische Universität Kaiserslautern, D-67663 Kaiserslautern, Germany (L.S.M., M.R., M.S.);Laboratoire de Physiologie Membranaire et Moléculaire du Chloroplaste, Institut de Biologie Physico-Chimique, Unité Mixte de Recherche Centre National de la Recherche Scientifique/Université Pierre et Marie Curie, 7141 Paris, France (S.B., F.-A.W.); andZellbiologie/Elektronenmikroskopie, Universität Bayreuth, D-95440 Bayreuth, Germany (A.H., S.G.)
Plant Physiol. 2016 Feb;170(2):821-40. doi: 10.1104/pp.15.01458. Epub 2015 Dec 7.
The remarkable capability of photosystem II (PSII) to oxidize water comes along with its vulnerability to oxidative damage. Accordingly, organisms harboring PSII have developed strategies to protect PSII from oxidative damage and to repair damaged PSII. Here, we report on the characterization of the THYLAKOID ENRICHED FRACTION30 (TEF30) protein in Chlamydomonas reinhardtii, which is conserved in the green lineage and induced by high light. Fractionation studies revealed that TEF30 is associated with the stromal side of thylakoid membranes. By using blue native/Deriphat-polyacrylamide gel electrophoresis, sucrose density gradients, and isolated PSII particles, we found TEF30 to quantitatively interact with monomeric PSII complexes. Electron microscopy images revealed significantly reduced thylakoid membrane stacking in TEF30-underexpressing cells when compared with control cells. Biophysical and immunological data point to an impaired PSII repair cycle in TEF30-underexpressing cells and a reduced ability to form PSII supercomplexes after high-light exposure. Taken together, our data suggest potential roles for TEF30 in facilitating the incorporation of a new D1 protein and/or the reintegration of CP43 into repaired PSII monomers, protecting repaired PSII monomers from undergoing repeated repair cycles or facilitating the migration of repaired PSII monomers back to stacked regions for supercomplex reassembly.
光系统II(PSII)氧化水的卓越能力伴随着其对氧化损伤的脆弱性。因此,含有PSII的生物体已开发出保护PSII免受氧化损伤并修复受损PSII的策略。在此,我们报告了莱茵衣藻中类囊体富集组分30(TEF30)蛋白的特性,该蛋白在绿色谱系中保守且受高光诱导。分级分离研究表明,TEF30与类囊体膜的基质侧相关。通过使用蓝色天然/去垢剂聚丙烯酰胺凝胶电泳、蔗糖密度梯度和分离的PSII颗粒,我们发现TEF30与单体PSII复合物定量相互作用。电子显微镜图像显示,与对照细胞相比,TEF30表达不足的细胞中类囊体膜堆叠明显减少。生物物理和免疫学数据表明,TEF30表达不足的细胞中PSII修复循环受损,高光暴露后形成PSII超级复合物的能力降低。综上所述,我们的数据表明TEF30在促进新D1蛋白的掺入和/or CP43重新整合到修复的PSII单体中、保护修复的PSII单体免于经历重复修复循环或促进修复的PSII单体迁移回堆叠区域以进行超级复合物重新组装方面具有潜在作用。