Marsicano Claudia A, Irmis Randall B, Mancuso Adriana C, Mundil Roland, Chemale Farid
Departamento de Ciencias Geológicas, Instituto de Estudios Andinos-Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires C1428EHA, Argentina;
Natural History Museum of Utah, University of Utah, Salt Lake City, UT 84108-1214; Department of Geology & Geophysics, University of Utah, Salt Lake City, UT 84112-0102;
Proc Natl Acad Sci U S A. 2016 Jan 19;113(3):509-13. doi: 10.1073/pnas.1512541112. Epub 2015 Dec 7.
Dinosaurs have been major components of ecosystems for over 200 million years. Although different macroevolutionary scenarios exist to explain the Triassic origin and subsequent rise to dominance of dinosaurs and their closest relatives (dinosauromorphs), all lack critical support from a precise biostratigraphically independent temporal framework. The absence of robust geochronologic age control for comparing alternative scenarios makes it impossible to determine if observed faunal differences vary across time, space, or a combination of both. To better constrain the origin of dinosaurs, we produced radioisotopic ages for the Argentinian Chañares Formation, which preserves a quintessential assemblage of dinosaurian precursors (early dinosauromorphs) just before the first dinosaurs. Our new high-precision chemical abrasion thermal ionization mass spectrometry (CA-TIMS) U-Pb zircon ages reveal that the assemblage is early Carnian (early Late Triassic), 5- to 10-Ma younger than previously thought. Combined with other geochronologic data from the same basin, we constrain the rate of dinosaur origins, demonstrating their relatively rapid origin in a less than 5-Ma interval, thus halving the temporal gap between assemblages containing only dinosaur precursors and those with early dinosaurs. After their origin, dinosaurs only gradually dominated mid- to high-latitude terrestrial ecosystems millions of years later, closer to the Triassic-Jurassic boundary.
恐龙在超过两亿年的时间里一直是生态系统的主要组成部分。尽管存在不同的宏观演化情景来解释恐龙及其近亲(恐龙形类)在三叠纪的起源以及随后的崛起并占据主导地位,但所有这些情景都缺乏来自精确的生物地层学独立时间框架的关键支持。由于缺乏用于比较不同情景的可靠地质年代控制,因此无法确定观察到的动物群差异是否随时间、空间或两者的组合而变化。为了更好地确定恐龙的起源,我们对阿根廷的查尼亚雷斯组进行了放射性同位素测年,该地层保存了第一批恐龙出现之前典型的恐龙前身(早期恐龙形类)组合。我们新的高精度化学磨损热电离质谱(CA-TIMS)铀-铅锆石年龄表明,该组合为卡尼阶早期(晚三叠世早期),比之前认为的年轻500万至1000万年。结合来自同一盆地的其他地质年代数据,我们确定了恐龙起源的速率,证明它们在不到500万年的时间间隔内相对快速地起源,从而将仅包含恐龙前身的组合与包含早期恐龙的组合之间的时间间隔缩短了一半。恐龙起源后,数百万年后才逐渐在中高纬度陆地生态系统中占据主导地位,这一过程更接近三叠纪-侏罗纪边界。