Suppr超能文献

分子间势能面的排列不变拟合:以Ne-C2H2体系为例。

Permutationally invariant fitting of intermolecular potential energy surfaces: A case study of the Ne-C2H2 system.

作者信息

Li Jun, Guo Hua

机构信息

School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China.

Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA.

出版信息

J Chem Phys. 2015 Dec 7;143(21):214304. doi: 10.1063/1.4936660.

Abstract

The permutation invariant polynomial-neural network (PIP-NN) approach is extended to fit intermolecular potential energy surfaces (PESs). Specifically, three PESs were constructed for the Ne-C2H2 system. PES1 is a full nine-dimensional PIP-NN PES directly fitted to ∼42 000 ab initio points calculated at the level of CCSD(T)-F12a/cc-pCVTZ-F12, while the other two consist of the six-dimensional PES for C2H2 [H. Han, A. Li, and H. Guo, J. Chem. Phys. 141, 244312 (2014)] and an intermolecular PES represented in either the PIP (PES2) or PIP-NN (PES3) form. The comparison of fitting errors and their distributions, one-dimensional cuts and two-dimensional contour plots of the PESs, as well as classical trajectory collisional energy transfer dynamics calculations shows that the three PESs are very similar. We conclude that full-dimensional PESs for non-covalent interacting molecular systems can be constructed efficiently and accurately by the PIP-NN approach for both the constituent molecules and intermolecular parts.

摘要

排列不变多项式神经网络(PIP-NN)方法被扩展用于拟合分子间势能面(PESs)。具体而言,为Ne-C2H2体系构建了三个PESs。PES1是一个完整的九维PIP-NN PES,直接拟合到在CCSD(T)-F12a/cc-pCVTZ-F12水平计算得到的约42000个从头算点,而另外两个由C2H2的六维PES [H. Han, A. Li, and H. Guo, J. Chem. Phys. 141, 244312 (2014)] 以及以PIP(PES2)或PIP-NN(PES3)形式表示的分子间PES组成。对PESs的拟合误差及其分布、一维截面和二维等高线图的比较,以及经典轨迹碰撞能量转移动力学计算表明,这三个PESs非常相似。我们得出结论,通过PIP-NN方法可以高效且准确地为非共价相互作用分子体系的组成分子和分子间部分构建全维PESs。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验