Suppr超能文献

双阱和多阱势的模拟量子退火

Simulated quantum annealing of double-well and multiwell potentials.

作者信息

Inack E M, Pilati S

机构信息

The Abdus Salam International Centre for Theoretical Physics, I-34151 Trieste, Italy.

SISSA, International School for Advanced Studies and INFN, Sezione di Trieste, I-34136 Trieste, Italy.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Nov;92(5):053304. doi: 10.1103/PhysRevE.92.053304. Epub 2015 Nov 19.

Abstract

We analyze the performance of quantum annealing as a heuristic optimization method to find the absolute minimum of various continuous models, including landscapes with only two wells and also models with many competing minima and with disorder. The simulations performed using a projective quantum Monte Carlo (QMC) algorithm are compared with those based on the finite-temperature path-integral QMC technique and with classical annealing. We show that the projective QMC algorithm is more efficient than the finite-temperature QMC technique, and that both are inferior to classical annealing if this is performed with appropriate long-range moves. However, as the difficulty of the optimization problem increases, classical annealing loses efficiency, while the projective QMC algorithm keeps stable performance and is finally the most effective optimization tool. We discuss the implications of our results for the outstanding problem of testing the efficiency of adiabatic quantum computers using stochastic simulations performed on classical computers.

摘要

我们分析了量子退火作为一种启发式优化方法的性能,以找到各种连续模型的绝对最小值,包括只有两个势阱的景观以及具有许多竞争最小值和无序的模型。使用投影量子蒙特卡罗(QMC)算法进行的模拟与基于有限温度路径积分QMC技术的模拟以及经典退火进行了比较。我们表明,投影QMC算法比有限温度QMC技术更有效,并且如果进行适当的长程移动,两者都不如经典退火。然而,随着优化问题难度的增加,经典退火失去效率,而投影QMC算法保持稳定性能,最终成为最有效的优化工具。我们讨论了我们的结果对于使用经典计算机上执行的随机模拟来测试绝热量子计算机效率这一突出问题的影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验