Kang Jungseog, Hsu Chien-Hsiang, Wu Qi, Liu Shanshan, Coster Adam D, Posner Bruce A, Altschuler Steven J, Wu Lani F
Green Center for Systems Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
Department of Biology, Arts and Science, New York University-Shanghai, Shanghai, 200122, China.
Nat Biotechnol. 2016 Jan;34(1):70-77. doi: 10.1038/nbt.3419. Epub 2015 Dec 14.
High-content, image-based screens enable the identification of compounds that induce cellular responses similar to those of known drugs but through different chemical structures or targets. A central challenge in designing phenotypic screens is choosing suitable imaging biomarkers. Here we present a method for systematically identifying optimal reporter cell lines for annotating compound libraries (ORACLs), whose phenotypic profiles most accurately classify a training set of known drugs. We generate a library of fluorescently tagged reporter cell lines, and let analytical criteria determine which among them--the ORACL--best classifies compounds into multiple, diverse drug classes. We demonstrate that an ORACL can functionally annotate large compound libraries across diverse drug classes in a single-pass screen and confirm high prediction accuracy by means of orthogonal, secondary validation assays. Our approach will increase the efficiency, scale and accuracy of phenotypic screens by maximizing their discriminatory power.
基于图像的高内涵筛选能够识别出通过不同化学结构或靶点诱导出与已知药物类似细胞反应的化合物。设计表型筛选的一个核心挑战是选择合适的成像生物标志物。在此,我们提出一种系统地识别用于注释化合物文库的最佳报告细胞系(ORACL)的方法,其表型谱能最准确地将一组已知药物训练集进行分类。我们生成了一个荧光标记报告细胞系文库,并通过分析标准确定其中哪一个——即ORACL——能将化合物最佳地分类到多个不同的药物类别中。我们证明,一个ORACL能够在单次筛选中对跨多种药物类别的大型化合物文库进行功能注释,并通过正交的二次验证试验确认高预测准确性。我们的方法将通过最大化其鉴别能力来提高表型筛选的效率、规模和准确性。