Sebastián-González Esther, Pang-Ching Joshua, Barbosa Jomar M, Hart Patrick
Department of Biology University of Hawai'i at Hilo 96720 Hilo Hawai'i.
Department of Global Ecology Carnegie Institution for Science 94305 Stanford California.
Ecol Evol. 2015 Oct 5;5(20):4696-705. doi: 10.1002/ece3.1743. eCollection 2015 Oct.
The management of animal endangered species requires detailed information on their distribution and abundance, which is often hard to obtain. When animals communicate using sounds, one option is to use automatic sound recorders to gather information on the species for long periods of time with low effort. One drawback of this method is that processing all the information manually requires large amounts of time and effort. Our objective was to create a relatively "user-friendly" (i.e., that does not require big programming skills) automatic detection algorithm to improve our ability to get basic data from sound-emitting animal species. We illustrate our algorithm by showing two possible applications with the Hawai'i 'Amakihi, Hemignathus virens virens, a forest bird from the island of Hawai'i. We first characterized the 'Amakihi song using recordings from areas where the species is present in high densities. We used this information to train a classification algorithm, the support vector machine (SVM), in order to identify 'Amakihi songs from a series of potential songs. We then used our algorithm to detect the species in areas where its presence had not been previously confirmed. We also used the algorithm to compare the relative abundance of the species in different areas where management actions may be applied. The SVM had an accuracy of 86.5% in identifying 'Amakihi. We confirmed the presence of the 'Amakihi at the study area using the algorithm. We also found that the relative abundance of 'Amakihi changes among study areas, and this information can be used to assess where management strategies for the species should be better implemented. Our automatic song detection algorithm is effective, "user-friendly" and can be very useful for optimizing the management and conservation of those endangered animal species that communicate acoustically.
对濒危动物物种的管理需要有关其分布和数量的详细信息,而这些信息往往很难获得。当动物通过声音进行交流时,一种选择是使用自动录音设备,以较低的工作量长时间收集有关该物种的信息。这种方法的一个缺点是,手动处理所有信息需要大量的时间和精力。我们的目标是创建一种相对 “用户友好”(即不需要很高编程技能)的自动检测算法,以提高我们从发声动物物种获取基本数据的能力。我们通过展示两种可能的应用来说明我们的算法,这两种应用均以夏威夷绿雀(Hemignathus virens virens)为例,它是一种来自夏威夷岛的森林鸟类。我们首先利用该物种高密度分布区域的录音来描述夏威夷绿雀的歌声特征。我们利用这些信息训练一种分类算法——支持向量机(SVM),以便从一系列潜在的歌声中识别出夏威夷绿雀的歌声。然后,我们使用我们的算法在先前未确认该物种存在的区域检测该物种。我们还使用该算法比较了可能采取管理行动的不同区域中该物种的相对数量。支持向量机识别夏威夷绿雀歌声的准确率为86.5%。我们使用该算法在研究区域确认了夏威夷绿雀的存在。我们还发现,夏威夷绿雀的相对数量在不同研究区域有所变化,这些信息可用于评估该物种的管理策略应在何处更好地实施。我们的自动歌声检测算法有效、“用户友好”,对于优化那些通过声音进行交流的濒危动物物种的管理和保护非常有用。