Suppr超能文献

沙土地壤中土壤 CO2 吸收的模式和可能机制。

Patterns and possible mechanisms of soil CO2 uptake in sandy soil.

机构信息

Yanchi Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, PR China.

Yanchi Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, PR China; Key Laboratory of Soil and Water Conservation and Desertification Combating of the Ministry of Education, Beijing Forestry University, Beijing 100083, PR China.

出版信息

Sci Total Environ. 2016 Feb 15;544:587-94. doi: 10.1016/j.scitotenv.2015.11.163. Epub 2015 Dec 9.

Abstract

It has been reported that soils in drylands can absorb CO2, although the patterns and mechanisms of such a process remain under debate. To address this, we investigated the relationships between soil CO2 flux and meteorological factors and soil properties in Northwest China to reveal the reasons for "anomalous" soil CO2 flux in a desert ecosystem. Soil CO2 flux increased significantly and exponentially with surficial turbulence at the diel scale under dry conditions (P<0.05), whereas the relationship under wet conditions was insignificant. Furthermore, soil CO2 flux demonstrated remarkable negative correlation with soil air pressure (P<0.05) in both dry and wet conditions. Analysis considering Henry's Law indicated that soil water content was insufficient to dissolve the absorbed CO2 in dry conditions, but was sufficient in wet conditions. The concentration of soil HCO3(-) in the morning was higher than in the evening in dry conditions, but this pattern was reversed in wet conditions. These results imply that CO2 outgassing induced by turbulence, expansion of soil air, CO2 effusion from soil water, and carbonate precipitation during daytime can explain the abiotic diurnal CO2 release. Moreover, CO2 pumping from the atmosphere into the soil, caused mainly by carbonate dissolution, can account for nocturnal CO2 absorption in dry conditions. The abiotic soil CO2 flux pattern (CO2 absorption throughout the diel cycle) in wet conditions can be attributed to downward mass flow of soil CO2 and intensified soil air shrinkage, CO2 dissolving in soil water, and carbonate dissolution. These results provide a basis for determining the location of abiotic fixed carbon within soils in desert ecosystems.

摘要

据报道,旱地土壤可以吸收 CO2,尽管这一过程的模式和机制仍存在争议。为了解决这个问题,我们调查了中国西北地区土壤 CO2 通量与气象因素和土壤特性之间的关系,以揭示荒漠生态系统中“异常”土壤 CO2 通量的原因。在干燥条件下,地表紊流在日变化尺度上显著且呈指数增加土壤 CO2 通量(P<0.05),而在湿润条件下的关系则不显著。此外,在干燥和湿润条件下,土壤 CO2 通量与土壤气压呈显著负相关(P<0.05)。考虑亨利定律的分析表明,在干燥条件下,土壤水分不足以溶解吸收的 CO2,但在湿润条件下则足够。在干燥条件下,HCO3(-)在清晨的浓度高于傍晚,但在湿润条件下则相反。这些结果表明,紊流引起的 CO2 排放、土壤空气的膨胀、土壤水中 CO2 的逸出以及白天碳酸盐的沉淀可以解释非生物昼夜 CO2 释放。此外,主要由碳酸盐溶解引起的大气中 CO2 向土壤的泵吸作用可以解释干燥条件下夜间 CO2 的吸收。湿润条件下非生物土壤 CO2 通量模式(整个日变化周期内 CO2 吸收)可归因于土壤 CO2 的向下质量流和土壤空气收缩、CO2 在土壤水中溶解以及碳酸盐溶解的增强。这些结果为确定荒漠生态系统中土壤中非生物固定碳的位置提供了依据。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验