Suppr超能文献

作为交联时间函数的染色质免疫沉淀偏差

ChIP bias as a function of cross-linking time.

作者信息

Baranello Laura, Kouzine Fedor, Sanford Suzanne, Levens David

机构信息

Laboratory of Pathology, NCI/NIH, Bethesda, MD, 20892, USA.

出版信息

Chromosome Res. 2016 May;24(2):175-81. doi: 10.1007/s10577-015-9509-1. Epub 2015 Dec 21.

Abstract

The chromatin immunoprecipitation (ChIP) assay is widely used to capture interactions between chromatin and regulatory proteins in vivo. Formaldehyde cross-linking of DNA and proteins is a critical step required to trap their interactions inside the cells before immunoprecipitation and analysis. Yet insufficient attention has been given to variables that might give rise to artifacts in this procedure, such as the duration of cross-linking. We analyzed the dependence of the ChIP signal on the duration of formaldehyde cross-linking time for two proteins: DNA topoisomerase 1 (Top1) that is functionally associated with the double helix in vivo, especially with active chromatin, and green fluorescent protein (GFP) that has no known bona fide interactions with DNA. With short time of formaldehyde fixation, only Top1 immunoprecipation efficiently recovered DNA from active promoters, whereas prolonged fixation augmented non-specific recovery of GFP dramatizing the need to optimize ChIP protocols to minimize the time of cross-linking, especially for abundant nuclear proteins. Thus, ChIP is a powerful approach to study the localization of protein on the genome when care is taken to manage potential artifacts.

摘要

染色质免疫沉淀(ChIP)分析被广泛用于在体内捕获染色质与调控蛋白之间的相互作用。DNA与蛋白质的甲醛交联是在免疫沉淀和分析之前捕获细胞内它们相互作用所需的关键步骤。然而,对于此过程中可能产生假象的变量,如交联持续时间,关注不足。我们分析了两种蛋白质的ChIP信号对甲醛交联时间的依赖性:在体内与双螺旋功能相关,特别是与活性染色质相关的DNA拓扑异构酶1(Top1),以及与DNA无已知真实相互作用的绿色荧光蛋白(GFP)。甲醛固定时间短时,只有Top1免疫沉淀能有效地从活性启动子中回收DNA,而延长固定时间会增加GFP的非特异性回收,这突出了优化ChIP方案以尽量缩短交联时间的必要性,特别是对于丰富的核蛋白。因此,当谨慎处理潜在假象时,ChIP是研究蛋白质在基因组上定位的有力方法。

相似文献

1
ChIP bias as a function of cross-linking time.
Chromosome Res. 2016 May;24(2):175-81. doi: 10.1007/s10577-015-9509-1. Epub 2015 Dec 21.
2
4
Formaldehyde Cross-Linking.
Cold Spring Harb Protoc. 2018 Apr 2;2018(4):2018/4/pdb.prot082594. doi: 10.1101/pdb.prot082594.
5
Second-generation method for analysis of chromatin binding with formaldehyde-cross-linking kinetics.
J Biol Chem. 2017 Nov 24;292(47):19338-19355. doi: 10.1074/jbc.M117.796441. Epub 2017 Sep 26.
6
Measuring chromatin interaction dynamics on the second time scale at single-copy genes.
Science. 2013 Oct 18;342(6156):369-72. doi: 10.1126/science.1242369. Epub 2013 Oct 3.
7
ChIP-seq: using high-throughput sequencing to discover protein-DNA interactions.
Methods. 2009 Jul;48(3):240-8. doi: 10.1016/j.ymeth.2009.03.001. Epub 2009 Mar 9.
8
Chromatin Immunoprecipitation in Human and Yeast Cells.
Methods Mol Biol. 2018;1767:257-269. doi: 10.1007/978-1-4939-7774-1_14.
9
Chromatin Immunoprecipitation.
Cold Spring Harb Protoc. 2020 Aug 3;2020(8):098665. doi: 10.1101/pdb.prot098665.
10
Bi-functional cross-linking reagents efficiently capture protein-DNA complexes in Drosophila embryos.
Fly (Austin). 2014;8(1):43-51. doi: 10.4161/fly.26805. Epub 2013 Dec 13.

引用本文的文献

1
Optimized ChIP-exo for mammalian cells and patterned sequencing flow cells.
bioRxiv. 2025 Aug 20:2025.08.14.670389. doi: 10.1101/2025.08.14.670389.
2
A practical guide to sequencing in neuropsychiatric research.
NPP Digit Psychiatry Neurosci. 2025;3(1):21. doi: 10.1038/s44277-025-00041-0. Epub 2025 Aug 8.
3
p53 reveals principles of chromatin remodeling and enhancer activation.
Nucleic Acids Res. 2025 Jun 6;53(11). doi: 10.1093/nar/gkaf465.
4
Collective unstructured interactions drive chromatin binding of transcription factors.
bioRxiv. 2025 May 23:2025.05.16.654615. doi: 10.1101/2025.05.16.654615.
5
Benchmark of chromatin-protein interaction methods in haploid round spermatids.
Front Cell Dev Biol. 2025 May 13;13:1572405. doi: 10.3389/fcell.2025.1572405. eCollection 2025.
6
Optimized CUT&RUN protocol for activated primary mouse B cells.
PLoS One. 2025 Apr 24;20(4):e0322139. doi: 10.1371/journal.pone.0322139. eCollection 2025.
7
CUT&Tag recovers up to half of ENCODE ChIP-seq histone acetylation peaks.
Nat Commun. 2025 Mar 27;16(1):2993. doi: 10.1038/s41467-025-58137-2.
8
CUT&Tag Identifies Repetitive Genomic Loci that are Excluded from ChIP Assays.
bioRxiv. 2025 Feb 5:2025.02.03.636299. doi: 10.1101/2025.02.03.636299.
9
Emerging toolkits for decoding the co-occurrence of modified histones and chromatin proteins.
EMBO Rep. 2024 Aug;25(8):3202-3220. doi: 10.1038/s44319-024-00199-2. Epub 2024 Aug 2.
10
Genome-wide ATAC-see screening identifies TFDP1 as a modulator of global chromatin accessibility.
Nat Genet. 2024 Mar;56(3):473-482. doi: 10.1038/s41588-024-01658-1. Epub 2024 Feb 15.

本文引用的文献

1
Ligand-dependent enhancer activation regulated by topoisomerase-I activity.
Cell. 2015 Jan 29;160(3):367-80. doi: 10.1016/j.cell.2014.12.023. Epub 2015 Jan 22.
2
Chromatin accessibility: a window into the genome.
Epigenetics Chromatin. 2014 Nov 20;7(1):33. doi: 10.1186/1756-8935-7-33. eCollection 2014.
3
DNA break mapping reveals topoisomerase II activity genome-wide.
Int J Mol Sci. 2014 Jul 23;15(7):13111-22. doi: 10.3390/ijms150713111.
4
Widespread misinterpretable ChIP-seq bias in yeast.
PLoS One. 2013 Dec 9;8(12):e83506. doi: 10.1371/journal.pone.0083506. eCollection 2013.
5
Large-scale quality analysis of published ChIP-seq data.
G3 (Bethesda). 2014 Feb 19;4(2):209-23. doi: 10.1534/g3.113.008680.
6
Highly expressed loci are vulnerable to misleading ChIP localization of multiple unrelated proteins.
Proc Natl Acad Sci U S A. 2013 Nov 12;110(46):18602-7. doi: 10.1073/pnas.1316064110. Epub 2013 Oct 30.
7
DNA topoisomerases beyond the standard role.
Transcription. 2013 Sep-Dec;4(5):232-7. doi: 10.4161/trns.26598.
8
Measuring chromatin interaction dynamics on the second time scale at single-copy genes.
Science. 2013 Oct 18;342(6156):369-72. doi: 10.1126/science.1242369. Epub 2013 Oct 3.
9
Transcription-dependent dynamic supercoiling is a short-range genomic force.
Nat Struct Mol Biol. 2013 Mar;20(3):396-403. doi: 10.1038/nsmb.2517. Epub 2013 Feb 17.
10
Chromatin composition is changed by poly(ADP-ribosyl)ation during chromatin immunoprecipitation.
PLoS One. 2012;7(3):e32914. doi: 10.1371/journal.pone.0032914. Epub 2012 Mar 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验