Szalay Gergely, Judák Linda, Szadai Zoltán, Chiovini Balázs, Mezey Dávid, Pálfi Dénes, Madarász Miklós, Ócsai Katalin, Csikor Ferenc, Veress Máté, Maák Pál, Katona Gergely
Kétfoton Képalkotó Központ, Magyar Tudományos Akadémia, Kísérleti Orvostudományi Kutatóközpont Budapest.
Pázmány Péter Katolikus Egyetem, Információs Technológiai Kar Budapest.
Orv Hetil. 2015 Dec 27;156(52):2120-6. doi: 10.1556/650.2015.30329.
Two-photon microscopy is the ideal tool to study how signals are processed in the functional brain tissue. However, early raster scanning strategies were inadequate to record fast 3D events like action potentials.
The aim of the authors was to record various neuronal activity patterns with high signal-to-noise ratio in an optical manner.
Authors developed new data acquisition methods and microscope hardware.
Multiple Line Scanning enables the experimenter to select multiple regions of interests, doing this not just increases repetition speed, but also the signal-to-noise ratio of the fluorescence transients. On the same principle, an acousto-optical deflector based 3D scanning microscope has been developed with a sub-millisecond temporal resolution and a millimeter z-scanning range. Its usability is demonstrated by obtaining 3D optical recordings of action potential backpropagation in several hundred micrometers long neuronal processes of single neurons and by 3D random-access scanning of Ca(2+) transients in hundreds of neurons in the mouse visual cortex.
Region of interest scanning enables high signal-to-noise ratio and repetition speed, while keeping good depth penetration of the two-photon microscopes.
双光子显微镜是研究功能脑组织中信号如何处理的理想工具。然而,早期的光栅扫描策略不足以记录诸如动作电位之类的快速三维事件。
作者的目的是以光学方式高信噪比地记录各种神经元活动模式。
作者开发了新的数据采集方法和显微镜硬件。
多线扫描使实验者能够选择多个感兴趣区域,这样做不仅提高了重复速度,还提高了荧光瞬变的信噪比。基于同样的原理,已开发出一种基于声光偏转器的三维扫描显微镜,其具有亚毫秒级的时间分辨率和毫米级的z轴扫描范围。通过在单个神经元数百微米长的神经突中获取动作电位反向传播的三维光学记录,以及对小鼠视觉皮层中数百个神经元的Ca(2+)瞬变进行三维随机存取扫描,证明了其可用性。
感兴趣区域扫描可实现高信噪比和重复速度,同时保持双光子显微镜良好的深度穿透能力。