Morozova Natalia, Sabantsev Anton, Bogdanova Ekaterina, Fedorova Yana, Maikova Anna, Vedyaykin Alexey, Rodic Andjela, Djordjevic Marko, Khodorkovskii Mikhail, Severinov Konstantin
Peter the Great St. Petersburg Polytechnic University, St. Petersburg, 195251, Russia.
Waksman Institute of Microbiology, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA.
Nucleic Acids Res. 2016 Jan 29;44(2):790-800. doi: 10.1093/nar/gkv1490. Epub 2015 Dec 19.
Type II restriction-modification (R-M) systems encode a restriction endonuclease that cleaves DNA at specific sites, and a methyltransferase that modifies same sites protecting them from restriction endonuclease cleavage. Type II R-M systems benefit bacteria by protecting them from bacteriophages. Many type II R-M systems are plasmid-based and thus capable of horizontal transfer. Upon the entry of such plasmids into a naïve host with unmodified genomic recognition sites, methyltransferase should be synthesized first and given sufficient time to methylate recognition sites in the bacterial genome before the toxic restriction endonuclease activity appears. Here, we directly demonstrate a delay in restriction endonuclease synthesis after transformation of Escherichia coli cells with a plasmid carrying the Esp1396I type II R-M system, using single-cell microscopy. We further demonstrate that before the appearance of the Esp1396I restriction endonuclease the intracellular concentration of Esp1396I methyltransferase undergoes a sharp peak, which should allow rapid methylation of host genome recognition sites. A mathematical model that satisfactorily describes the observed dynamics of both Esp1396I enzymes is presented. The results reported here were obtained using a functional Esp1396I type II R-M system encoding both enzymes fused to fluorescent proteins. Similar approaches should be applicable to the studies of other R-M systems at single-cell level.
II型限制-修饰(R-M)系统编码一种在特定位点切割DNA的限制内切酶和一种修饰相同位点以保护其免受限制内切酶切割的甲基转移酶。II型R-M系统通过保护细菌免受噬菌体侵害而使其受益。许多II型R-M系统基于质粒,因此能够进行水平转移。当此类质粒进入具有未修饰基因组识别位点的新宿主时,甲基转移酶应首先合成,并在毒性限制内切酶活性出现之前给予足够的时间来甲基化细菌基因组中的识别位点。在这里,我们使用单细胞显微镜直接证明了用携带Esp1396I II型R-M系统的质粒转化大肠杆菌细胞后,限制内切酶合成存在延迟。我们进一步证明,在Esp1396I限制内切酶出现之前,Esp1396I甲基转移酶的细胞内浓度会经历一个 sharp peak(此处原文有误,推测可能是sharp peak,译为“急剧峰值”),这应该能使宿主基因组识别位点快速甲基化。我们提出了一个数学模型,该模型能够令人满意地描述所观察到的两种Esp1396I酶的动力学。这里报道的结果是使用编码与荧光蛋白融合的两种酶的功能性Esp1396I II型R-M系统获得的。类似的方法应该适用于在单细胞水平上对其他R-M系统的研究。