Molecular Plant Biology, Department of Biochemistry, University of Turku, 20014 Turku, Finland.
Dipartimento di Bioscienze, Università degli studi di Milano, 20133 Milano, Italy.
Mol Plant. 2016 Feb 1;9(2):271-288. doi: 10.1016/j.molp.2015.12.001. Epub 2015 Dec 11.
Plants need tight regulation of photosynthetic electron transport for survival and growth under environmental and metabolic conditions. For this purpose, the linear electron transport (LET) pathway is supplemented by a number of alternative electron transfer pathways and valves. In Arabidopsis, cyclic electron transport (CET) around photosystem I (PSI), which recycles electrons from ferrodoxin to plastoquinone, is the most investigated alternative route. However, the interdependence of LET and CET and the relative importance of CET remain unclear, largely due to the difficulties in precise assessment of the contribution of CET in the presence of LET, which dominates electron flow under physiological conditions. We therefore generated Arabidopsis mutants with a minimal water-splitting activity, and thus a low rate of LET, by combining knockout mutations in PsbO1, PsbP2, PsbQ1, PsbQ2, and PsbR loci. The resulting Δ5 mutant is viable, although mature leaves contain only ∼ 20% of wild-type naturally less abundant PsbO2 protein. Δ5 plants compensate for the reduction in LET by increasing the rate of CET, and inducing a strong non-photochemical quenching (NPQ) response during dark-to-light transitions. To identify the molecular origin of such a high-capacity CET, we constructed three sextuple mutants lacking the qE component of NPQ (Δ5 npq4-1), NDH-mediated CET (Δ5 crr4-3), or PGR5-PGRL1-mediated CET (Δ5 pgr5). Their analysis revealed that PGR5-PGRL1-mediated CET plays a major role in ΔpH formation and induction of NPQ in C3 plants. Moreover, while pgr5 dies at the seedling stage under fluctuating light conditions, Δ5 pgr5 plants are able to survive, which underlines the importance of PGR5 in modulating the intersystem electron transfer.
植物需要严格调控光合作用电子传递,以适应环境和代谢条件下的生存和生长。为此,线性电子传递(LET)途径由许多替代电子转移途径和阀门来补充。在拟南芥中,循环电子传递(CET)围绕光系统 I(PSI)进行,它将电子从铁氧还蛋白循环到质体醌,是研究最多的替代途径。然而,LET 和 CET 的相互依赖性以及 CET 的相对重要性仍然不清楚,这在很大程度上是由于在 LET 存在的情况下精确评估 CET 贡献的困难,而 LET 在生理条件下主导电子流。因此,我们通过组合 PsbO1、PsbP2、PsbQ1、PsbQ2 和 PsbR 基因座的敲除突变,生成了一个具有最小水分解活性(因此 LET 速率较低)的拟南芥突变体。由此产生的Δ5 突变体是可行的,尽管成熟叶片仅含有约 20%野生型中自然较少的 PsbO2 蛋白。Δ5 植物通过增加 CET 速率来补偿 LET 的减少,并在暗至光的转变过程中诱导强烈的非光化学猝灭(NPQ)反应。为了确定这种高容量 CET 的分子起源,我们构建了三个 sextuple 突变体,它们缺乏 NPQ 的 qE 成分(Δ5 npq4-1)、NDH 介导的 CET(Δ5 crr4-3)或 PGR5-PGRL1 介导的 CET(Δ5 pgr5)。它们的分析表明,PGR5-PGRL1 介导的 CET 在 C3 植物中形成ΔpH 和诱导 NPQ 中起主要作用。此外,虽然 pgr5 在波动光照条件下的幼苗阶段死亡,但Δ5 pgr5 植物能够存活,这强调了 PGR5 在调节系统间电子转移中的重要性。