Halwidl Daniel, Stöger Bernhard, Mayr-Schmölzer Wernfried, Pavelec Jiri, Fobes David, Peng Jin, Mao Zhiqiang, Parkinson Gareth S, Schmid Michael, Mittendorfer Florian, Redinger Josef, Diebold Ulrike
Institute of Applied Physics, TU Wien, Wiedner Hauptstrasse 8-10/134, A-1040 Vienna, Austria.
Center for Computational Materials Science, TU Wien, Wiedner Hauptstrasse 8-10/134, A-1040 Vienna, Austria.
Nat Mater. 2016 Apr;15(4):450-455. doi: 10.1038/nmat4512. Epub 2015 Dec 21.
Although perovskite oxides hold promise in applications ranging from solid oxide fuel cells to catalysts, their surface chemistry is poorly understood at the molecular level. Here we follow the formation of the first monolayer of water at the (001) surfaces of Sr(n+1)Ru(n)O3(n+1) (n = 1, 2) using low-temperature scanning tunnelling microscopy, X-ray photoelectron spectroscopy, and density functional theory. These layered perovskites cleave between neighbouring SrO planes, yielding almost ideal, rocksalt-like surfaces. An adsorbed monomer dissociates and forms a pair of hydroxide ions. The OH stemming from the original molecule stays trapped at Sr-Sr bridge positions, circling the surface OH with a measured activation energy of 187 ± 10 meV. At higher coverage, dimers of dissociated water assemble into one-dimensional chains and form a percolating network where water adsorbs molecularly in the gaps. Our work shows the limitations of applying surface chemistry concepts derived for binary rocksalt oxides to perovskites.
尽管钙钛矿氧化物在从固体氧化物燃料电池到催化剂等一系列应用中具有潜力,但其表面化学在分子水平上仍知之甚少。在这里,我们使用低温扫描隧道显微镜、X射线光电子能谱和密度泛函理论,追踪了Sr(n+1)Ru(n)O3(n+1)(n = 1, 2)的(001)表面上第一层水的形成过程。这些层状钙钛矿在相邻的SrO平面之间解理,产生几乎理想的、类似岩盐的表面。一个吸附的单体解离并形成一对氢氧根离子。源自原始分子的OH被困在Sr-Sr桥位,以187±10 meV的测量活化能围绕表面OH循环。在更高的覆盖率下,解离水的二聚体组装成一维链,并形成一个渗流网络,水在间隙中以分子形式吸附。我们的工作展示了将从二元岩盐氧化物推导出来的表面化学概念应用于钙钛矿的局限性。