Benitez Patrick L, Mascharak Shamik, Proctor Amy C, Heilshorn Sarah C
Department of Bioengineering, Stanford University, 476 Lomita Mall, Stanford, CA 94305,
Department of Chemical Engineering, Stanford University, 476 Lomita Mall, Stanford, CA 94305,
Integr Biol (Camb). 2016 Jan;8(1):50-61. doi: 10.1039/c5ib00258c. Epub 2015 Dec 21.
While ligand clustering is known to enhance integrin activation, this insight has been difficult to apply to the design of implantable biomaterials because the local and global ligand densities that enable clustering-enhanced integrin signaling were unpredictable. Here, two general design principles for biomaterial ligand clustering are elucidated. First, clustering ligands enhances integrin-dependent signals when the global ligand density, i.e., the ligand density across the cellular length scale, is near the ligand's effective dissociation constant (KD,eff). Second, clustering ligands enhances integrin activation when the local ligand density, i.e., the ligand density across the length scale of individual focal adhesions, is less than an overcrowding threshold. To identify these principles, we fabricated a series of elastin-like, electrospun fabrics with independent control over the local (0 to 122 000 ligands μm(-2)) and global (0 to 71 000 ligand μm(-2)) densities of an arginine-glycine-aspartate (RGD) ligand. Antibody blocking studies confirmed that human umbilical vein endothelial cell adhesion to these protein-engineered biomaterials was primarily due to αVβ3 integrin binding. Clustering ligands enhanced cell proliferation, focal adhesion number, and focal adhesion kinase expression near the ligand's KD,eff of 12 000 RGD μm(-2). Near this global ligand density, cells on ligand-clustered fabrics behaved similarly to cells grown on fabrics with significantly larger global ligand densities but without clustering. However, this enhanced ligand-clustering effect was not observed above a threshold cut-off concentration. At a local ligand density of 122 000 RGD μm(-2), cell division, focal adhesion number, and focal adhesion kinase expression were significantly reduced relative to fabrics with identical global ligand density and lesser local ligand densities. Thus, when clustering results in overcrowding of ligands, integrin receptors are no longer able to effectively engage with their target ligands. Together, these two insights into the cellular responses to ligand clustering at the cell-matrix interface may serve as design principles when developing future generations of implantable biomaterials.
虽然已知配体聚集可增强整合素激活,但这一见解难以应用于可植入生物材料的设计,因为能够实现聚集增强整合素信号传导的局部和全局配体密度是不可预测的。在此,阐明了生物材料配体聚集的两个一般设计原则。首先,当全局配体密度,即跨细胞长度尺度的配体密度接近配体的有效解离常数(KD,eff)时,聚集配体可增强整合素依赖性信号。其次,当局部配体密度,即跨单个粘着斑长度尺度的配体密度小于过度拥挤阈值时,聚集配体可增强整合素激活。为了确定这些原则,我们制备了一系列类弹性蛋白的电纺纤维织物,可独立控制精氨酸 - 甘氨酸 - 天冬氨酸(RGD)配体的局部(0至122 000个配体μm(-2))和全局(0至71 000个配体μm(-2))密度。抗体阻断研究证实,人脐静脉内皮细胞对这些蛋白质工程生物材料的粘附主要归因于αVβ3整合素结合。在配体的KD,eff为12 000 RGDμm(-2)附近,聚集配体增强了细胞增殖、粘着斑数量和粘着斑激酶表达。在这个全局配体密度附近,配体聚集的纤维织物上的细胞表现类似于在具有明显更大全局配体密度但没有聚集的纤维织物上生长的细胞。然而,在阈值截止浓度以上未观察到这种增强的配体聚集效应。在局部配体密度为122 000 RGDμm(-2)时,相对于具有相同全局配体密度和较低局部配体密度的纤维织物,细胞分裂、粘着斑数量和粘着斑激酶表达显著降低。因此,当聚集导致配体过度拥挤时,整合素受体不再能够有效地与其靶配体结合。总之,这两个关于细胞对细胞 - 基质界面配体聚集反应的见解可作为开发下一代可植入生物材料时的设计原则。