Institute for Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, USA.
Phys Rev Lett. 2015 Dec 11;115(24):246404. doi: 10.1103/PhysRevLett.115.246404.
We present a first-principles framework to compute sum-frequency generation (SFG) vibrational spectra of semiconductors and insulators. The method is based on density functional theory and the use of maximally localized Wannier functions to compute the response to electric fields, and it includes the effect of electric field gradients at surfaces. In addition, it includes quadrupole contributions to SFG spectra, thus enabling the verification of the dipole approximation, whose validity determines the surface specificity of SFG spectroscopy. We compute the SFG spectra of ice I_{h} basal surfaces and identify which spectra components are affected by bulk contributions. Our results are in good agreement with experiments at low temperature.
我们提出了一种计算半导体和绝缘体和频(SFG)振动光谱的第一性原理框架。该方法基于密度泛函理论和最大局域化Wannier 函数来计算对电场的响应,并包括表面处电场梯度的影响。此外,它还包括 SFG 光谱的四极贡献,从而能够验证偶极近似的有效性,该近似的有效性决定了 SFG 光谱学的表面特异性。我们计算了冰 I_{h}基面的 SFG 光谱,并确定了哪些光谱分量受到体相贡献的影响。我们的结果与低温下的实验结果吻合良好。