Institute of Bioengineering and School of Engineering and Materials Science, Queen Mary University of London, Mile End Rd, London, E1 4NS, United Kingdom; Laboratoire Physico-chimie Curie-UMR 168, Institut Curie, Centre de Recherche, Paris, F-75248, France.
Institute of Bioengineering and School of Engineering and Materials Science, Queen Mary University of London, Mile End Rd, London, E1 4NS, United Kingdom.
Osteoarthritis Cartilage. 2016 May;24(5):912-20. doi: 10.1016/j.joca.2015.12.007. Epub 2015 Dec 17.
Chondrocyte dedifferentiation is known to influence cell mechanics leading to alterations in cell function. This study examined the influence of chondrocyte dedifferentiation in monolayer on cell viscoelastic properties and associated changes in actin organisation, bleb formation and membrane-actin cortex interaction.
Micropipette aspiration was used to estimate the viscoelastic properties of freshly isolated articular chondrocytes and the same cells after passage in monolayer. Studies quantified the cell membrane-actin cortex adhesion by measuring the critical pressure required for membrane detachment and bleb formation. We then examined the expression of ezrin, radixin and moesin (ERM) proteins which are involved in linking the membrane and actin cortex and combined this with theoretical modelling of bleb dynamics.
Dedifferentiated chondrocytes at passage 1 (P1) were found to be stiffer compared to freshly isolated chondrocytes (P0), with equilibrium modulus values of 0.40 and 0.16 kPa respectively. The critical pressure increased from 0.59 kPa at P0 to 0.74 kPa at P1. Dedifferentiated cells at P1 exhibited increased cortical F-actin organisation and increased expression of total and phosphorylated ERM proteins compared to cells at P0. Theoretical modelling confirmed the importance of membrane-actin cortex adhesion in regulating bleb formation and effective cellular elastic modulus.
This study demonstrates that chondrocyte dedifferentiation in monolayer strengthens membrane-actin cortex adhesion associated with increased F-actin organisation and up-regulation of ERM protein expression. Thus dedifferentiated cells have reduced susceptibility to bleb formation which increases cell modulus and may also regulate other fundamental aspects of cell function such as mechanotransduction and migration.
已知软骨细胞去分化会影响细胞力学,导致细胞功能改变。本研究探讨了单层培养中软骨细胞去分化对细胞粘弹性特性的影响,以及细胞内肌动蛋白组织、泡状突起形成和细胞膜-肌动蛋白皮层相互作用的相关变化。
采用微管吸吮技术评估原代分离的关节软骨细胞和传代单层培养后的软骨细胞的粘弹性特性。通过测量细胞膜从细胞表面脱离和泡状突起形成所需的临界压力,定量研究细胞细胞膜-肌动蛋白皮层黏附。然后,我们检测了参与连接细胞膜和肌动蛋白皮层的 ezrin、radixin 和 moesin(ERM)蛋白的表达,并结合泡状突起动力学的理论模型进行了分析。
与原代分离的软骨细胞(P0)相比,第 1 代(P1)去分化的软骨细胞更硬,平衡模量值分别为 0.40kPa 和 0.16kPa。临界压力从 P0 时的 0.59kPa 增加到 P1 时的 0.74kPa。与 P0 时的细胞相比,P1 时去分化的细胞具有更高的皮质 F-肌动蛋白组织和更高的总 ERM 蛋白及磷酸化 ERM 蛋白表达。理论模型证实了细胞膜-肌动蛋白皮层黏附在调节泡状突起形成和有效细胞弹性模量中的重要性。
本研究表明,单层培养中的软骨细胞去分化增强了与 F-肌动蛋白组织增加和 ERM 蛋白表达上调相关的细胞膜-肌动蛋白皮层黏附。因此,去分化细胞对泡状突起形成的敏感性降低,从而增加细胞模量,也可能调节细胞功能的其他基本方面,如机械转导和迁移。