Liberman Gilad, Louzoun Yoram, Artzi Moran, Nadav Guy, Ewing James R, Ben Bashat Dafna
The Functional Brain Center, The Wohl Institute for Advanced Imaging, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan.
Mathematics Department, Bar-Ilan University, Ramat-Gan.
Magn Reson Imaging. 2016 May;34(4):442-50. doi: 10.1016/j.mri.2015.12.014. Epub 2015 Dec 18.
Dynamic contrast enhanced (DCE) MRI using Tofts' model for estimating vascular permeability is widely accepted, yet inter-tissue differences in bolus arrival time (BAT) are generally ignored. In this work we propose a method, incorporating the BAT in the analysis, demonstrating its applicability and advantages in healthy subjects and patients. A method for DCE Up Sampled TEmporal Resolution (DUSTER) analysis is proposed which includes: baseline T1 map using DESPOT1 analyzed with flip angle (FA) correction; preprocessing; raw-signal-to-T1-to-concentration time curves (CTC) conversion; automatic arterial input function (AIF) extraction at temporal super-resolution; model fitting with model selection while incorporating BAT in the pharmacokinetic (PK) model, and fits contrast agent CTC while using exhaustive search in the BAT dimension in super-resolution. The method was applied to simulated data and to human data from 17 healthy subjects, six patients with glioblastoma, and two patients following stroke. BAT values were compared to time-to-peak (TTP) values extracted from dynamic susceptibility contrast imaging. Results show that the method improved the AIF estimation and allowed extraction of the BAT with a resolution of 0.8 s. In simulations, lower mean relative errors were detected for all PK parameters extracted using DUSTER compared to analysis without BAT correction (vp:5% vs. 20%, Ktrans: 9% vs. 24% and Kep: 8% vs. 17%, respectively), and BAT estimates demonstrated high correlations (r = 0.94, p < 1e− 10) with true values. In real data, high correlations between BAT values were detected when extracted from data acquired with high temporal resolution (2 s) and sub-sampled standard resolution data (6 s) (mean r = 0.85,p < 1e− 10). BAT and TTP values were significantly correlated in the different brain regions in healthy subjects (mean r = 0.72,p = < 1e− 3), as were voxel-wise comparisons in patients (mean r = 0.89, p < 1e− 10). In conclusion, incorporating BAT in DCE analysis improves estimation accuracy for the AIF and the PK parameters while providing an additional clinically important parameter.
使用托夫茨模型估计血管通透性的动态对比增强(DCE)MRI已被广泛接受,但团注到达时间(BAT)的组织间差异通常被忽略。在这项工作中,我们提出了一种在分析中纳入BAT的方法,证明了其在健康受试者和患者中的适用性和优势。提出了一种用于DCE上采样时间分辨率(DUSTER)分析的方法,该方法包括:使用经过翻转角(FA)校正的DESPOT1分析的基线T1图;预处理;原始信号到T1到浓度时间曲线(CTC)转换;在时间超分辨率下自动提取动脉输入函数(AIF);在药代动力学(PK)模型中纳入BAT的同时进行模型选择的模型拟合,并在超分辨率下在BAT维度中使用穷举搜索拟合造影剂CTC。该方法应用于模拟数据以及来自17名健康受试者、6名胶质母细胞瘤患者和2名中风患者的人体数据。将BAT值与从动态磁敏感对比成像中提取的峰值时间(TTP)值进行比较。结果表明,该方法改善了AIF估计,并允许以0.8秒的分辨率提取BAT。在模拟中,与不进行BAT校正的分析相比,使用DUSTER提取的所有PK参数的平均相对误差更低(vp:5%对20%,Ktrans:9%对24%,Kep:8%对17%),并且BAT估计值与真实值显示出高度相关性(r = 0.94,p < 1e−10)。在实际数据中,从高时间分辨率(2秒)采集的数据和下采样标准分辨率数据(6秒)中提取的BAT值之间检测到高度相关性(平均r = 0.85,p < 1e−10)。在健康受试者的不同脑区中,BAT和TTP值显著相关(平均r = 0.72,p = < 1e−3),在患者中体素水平的比较也是如此(平均r = 0.89,p < 1e−10)。总之,在DCE分析中纳入BAT可提高AIF和PK参数的估计准确性,同时提供一个额外的临床重要参数。