Suppr超能文献

解调带变换

The demodulated band transform.

作者信息

Kovach Christopher K, Gander Phillip E

机构信息

Department of Neurosurgery, The University of Iowa College of Medicine, United States.

Department of Neurosurgery, The University of Iowa College of Medicine, United States.

出版信息

J Neurosci Methods. 2016 Mar 1;261:135-54. doi: 10.1016/j.jneumeth.2015.12.004. Epub 2015 Dec 19.

Abstract

BACKGROUND

Windowed Fourier decompositions (WFD) are widely used in measuring stationary and non-stationary spectral phenomena and in describing pairwise relationships among multiple signals. Although a variety of WFDs see frequent application in electrophysiological research, including the short-time Fourier transform, continuous wavelets, bandpass filtering and multitaper-based approaches, each carries certain drawbacks related to computational efficiency and spectral leakage. This work surveys the advantages of a WFD not previously applied in electrophysiological settings.

NEW METHODS

A computationally efficient form of complex demodulation, the demodulated band transform (DBT), is described.

RESULTS

DBT is shown to provide an efficient approach to spectral estimation with minimal susceptibility to spectral leakage. In addition, it lends itself well to adaptive filtering of non-stationary narrowband noise.

COMPARISON WITH EXISTING METHODS

A detailed comparison with alternative WFDs is offered, with an emphasis on the relationship between DBT and Thomson's multitaper. DBT is shown to perform favorably in combining computational efficiency with minimal introduction of spectral leakage.

CONCLUSION

DBT is ideally suited to efficient estimation of both stationary and non-stationary spectral and cross-spectral statistics with minimal susceptibility to spectral leakage. These qualities are broadly desirable in many settings.

摘要

背景

加窗傅里叶分解(WFD)广泛应用于测量平稳和非平稳频谱现象以及描述多个信号之间的成对关系。尽管多种WFD在电生理研究中经常应用,包括短时傅里叶变换、连续小波变换、带通滤波和基于多窗谱分析的方法,但每种方法都存在与计算效率和频谱泄漏相关的某些缺点。本研究探讨了一种此前未应用于电生理环境的WFD的优点。

新方法

描述了一种计算效率高的复解调形式,即解调带通变换(DBT)。

结果

DBT被证明是一种有效的频谱估计方法,对频谱泄漏的敏感性最小。此外,它非常适合对非平稳窄带噪声进行自适应滤波。

与现有方法的比较

对替代WFD进行了详细比较,重点是DBT与汤姆森多窗谱分析之间的关系。结果表明,DBT在结合计算效率和最小化频谱泄漏方面表现良好。

结论

DBT非常适合高效估计平稳和非平稳频谱及互谱统计量,对频谱泄漏的敏感性最小。这些特性在许多情况下都非常有用。

相似文献

1
The demodulated band transform.
J Neurosci Methods. 2016 Mar 1;261:135-54. doi: 10.1016/j.jneumeth.2015.12.004. Epub 2015 Dec 19.
2
Detecting phase-amplitude coupling with high frequency resolution using adaptive decompositions.
J Neurosci Methods. 2014 Apr 15;226:15-32. doi: 10.1016/j.jneumeth.2014.01.006. Epub 2014 Jan 19.
3
Fourier-, Hilbert- and wavelet-based signal analysis: are they really different approaches?
J Neurosci Methods. 2004 Aug 30;137(2):321-32. doi: 10.1016/j.jneumeth.2004.03.002.
4
Multiresolution decomposition of non-stationary EEG signals: a preliminary study.
Comput Biol Med. 1995 Jul;25(4):373-82. doi: 10.1016/0010-4825(95)00014-u.
6
Time-frequency techniques in biomedical signal analysis. a tutorial review of similarities and differences.
Methods Inf Med. 2013;52(4):279-96. doi: 10.3414/ME12-01-0083. Epub 2013 May 23.
7
Spectral analysis of mammographic images using a multitaper method.
Med Phys. 2012 Feb;39(2):801-10. doi: 10.1118/1.3676740.
8
Robust Estimation of Sparse Narrowband Spectra from Neuronal Spiking Data.
IEEE Trans Biomed Eng. 2017 Oct;64(10):2462-2474. doi: 10.1109/TBME.2016.2642783. Epub 2016 Dec 22.
9
Hilbert-Huang transformation-based time-frequency analysis methods in biomedical signal applications.
Proc Inst Mech Eng H. 2012 Mar;226(3):208-16. doi: 10.1177/0954411911434246.
10
Post-processing of auditory steady-state responses to correct spectral leakage.
J Neurosci Methods. 2009 Jun 30;181(1):145-9. doi: 10.1016/j.jneumeth.2009.04.013. Epub 2009 Apr 24.

引用本文的文献

2
Oscillatory Dynamics Serving Verbal Working Memory Differ in People with HIV and Are Linked To Disease Duration.
J Neuroimmune Pharmacol. 2025 Aug 19;20(1):77. doi: 10.1007/s11481-025-10235-0.
3
zBMI scales with multispectral alterations in the neural oscillatory dynamics serving verbal working memory in youth.
Imaging Neurosci (Camb). 2025 Jul 9;3. doi: 10.1162/IMAG.a.78. eCollection 2025.
6
Cognitive interference elicits developmental sex differences in inhibitory control.
Dev Cogn Neurosci. 2025 Jun 25;74:101590. doi: 10.1016/j.dcn.2025.101590.
7
Motor-Related Neural Dynamics are Modulated by Regular Cannabis Use Among People with HIV.
J Neuroimmune Pharmacol. 2025 Jun 6;20(1):63. doi: 10.1007/s11481-025-10219-0.
9
Cannabis- and HIV-related perturbations to the cortical gamma dynamics supporting inhibitory processing.
Brain Commun. 2025 May 15;7(3):fcaf190. doi: 10.1093/braincomms/fcaf190. eCollection 2025.
10
Oscillatory brain dynamics underlying affective face processing.
Soc Cogn Affect Neurosci. 2025 May 21;20(1). doi: 10.1093/scan/nsaf047.

本文引用的文献

1
Untangling cross-frequency coupling in neuroscience.
Curr Opin Neurobiol. 2015 Apr;31:51-61. doi: 10.1016/j.conb.2014.08.002. Epub 2014 Sep 15.
2
Toward a proper estimation of phase-amplitude coupling in neural oscillations.
J Neurosci Methods. 2014 Mar 30;225:42-56. doi: 10.1016/j.jneumeth.2014.01.002. Epub 2014 Jan 19.
3
EEG and MEG: relevance to neuroscience.
Neuron. 2013 Dec 4;80(5):1112-28. doi: 10.1016/j.neuron.2013.10.017.
4
Phase-amplitude coupling in human electrocorticography is spatially distributed and phase diverse.
J Neurosci. 2012 Jan 4;32(1):111-23. doi: 10.1523/JNEUROSCI.4816-11.2012.
5
The functional role of cross-frequency coupling.
Trends Cogn Sci. 2010 Nov;14(11):506-15. doi: 10.1016/j.tics.2010.09.001.
6
Spatially distributed patterns of oscillatory coupling between high-frequency amplitudes and low-frequency phases in human iEEG.
Neuroimage. 2011 Jan 15;54(2):836-50. doi: 10.1016/j.neuroimage.2010.09.029. Epub 2010 Sep 17.
7
The temporal structures and functional significance of scale-free brain activity.
Neuron. 2010 May 13;66(3):353-69. doi: 10.1016/j.neuron.2010.04.020.
8
Coding of repetitive transients by auditory cortex on Heschl's gyrus.
J Neurophysiol. 2009 Oct;102(4):2358-74. doi: 10.1152/jn.91346.2008. Epub 2009 Aug 12.
9
Coupling of mesoscopic brain oscillations: recent advances in analytical and theoretical perspectives.
Prog Neurobiol. 2009 Sep;89(1):61-78. doi: 10.1016/j.pneurobio.2009.06.002. Epub 2009 Jun 21.
10
Sharp edge artifacts and spurious coupling in EEG frequency comodulation measures.
J Neurosci Methods. 2008 May 30;170(2):352-7. doi: 10.1016/j.jneumeth.2008.01.020. Epub 2008 Feb 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验