Suppr超能文献

由错配修复功能紊乱和DNA聚合酶的混杂性导致的抗体多样化。

Antibody diversification caused by disrupted mismatch repair and promiscuous DNA polymerases.

作者信息

Zanotti Kimberly J, Gearhart Patricia J

机构信息

Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.

Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.

出版信息

DNA Repair (Amst). 2016 Feb;38:110-116. doi: 10.1016/j.dnarep.2015.11.011. Epub 2015 Dec 2.

Abstract

The enzyme activation-induced deaminase (AID) targets the immunoglobulin loci in activated B cells and creates DNA mutations in the antigen-binding variable region and DNA breaks in the switch region through processes known, respectively, as somatic hypermutation and class switch recombination. AID deaminates cytosine to uracil in DNA to create a U:G mismatch. During somatic hypermutation, the MutSα complex binds to the mismatch, and the error-prone DNA polymerase η generates mutations at A and T bases. During class switch recombination, both MutSα and MutLα complexes bind to the mismatch, resulting in double-strand break formation and end-joining. This review is centered on the mechanisms of how the MMR pathway is commandeered by B cells to generate antibody diversity.

摘要

酶激活诱导脱氨酶(AID)作用于活化B细胞中的免疫球蛋白基因座,通过分别称为体细胞高频突变和类别转换重组的过程,在抗原结合可变区产生DNA突变,并在转换区产生DNA断裂。AID将DNA中的胞嘧啶脱氨基为尿嘧啶,形成U:G错配。在体细胞高频突变过程中,MutSα复合物与错配结合,易出错的DNA聚合酶η在A和T碱基处产生突变。在类别转换重组过程中,MutSα和MutLα复合物都与错配结合,导致双链断裂形成和末端连接。本综述聚焦于B细胞如何利用错配修复途径产生抗体多样性的机制。

相似文献

1
Antibody diversification caused by disrupted mismatch repair and promiscuous DNA polymerases.
DNA Repair (Amst). 2016 Feb;38:110-116. doi: 10.1016/j.dnarep.2015.11.011. Epub 2015 Dec 2.
2
Somatic hypermutation: activation-induced deaminase for C/G followed by polymerase eta for A/T.
J Exp Med. 2007 Jan 22;204(1):7-10. doi: 10.1084/jem.20062409. Epub 2006 Dec 26.
4
Mismatch-mediated error prone repair at the immunoglobulin genes.
Biomed Pharmacother. 2011 Dec;65(8):529-36. doi: 10.1016/j.biopha.2011.09.001. Epub 2011 Oct 24.
5
Interference of mismatch and base excision repair during the processing of adjacent U/G mispairs may play a key role in somatic hypermutation.
Proc Natl Acad Sci U S A. 2009 Apr 7;106(14):5593-8. doi: 10.1073/pnas.0901726106. Epub 2009 Mar 23.
6
Competitive repair pathways in immunoglobulin gene hypermutation.
Philos Trans R Soc Lond B Biol Sci. 2009 Mar 12;364(1517):613-9. doi: 10.1098/rstb.2008.0206.
7
Molecular mechanisms of antibody somatic hypermutation.
Annu Rev Biochem. 2007;76:1-22. doi: 10.1146/annurev.biochem.76.061705.090740.
8
Controlling somatic hypermutation in immunoglobulin variable and switch regions.
Immunol Res. 2010 Jul;47(1-3):113-22. doi: 10.1007/s12026-009-8142-5.
9
UNG shapes the specificity of AID-induced somatic hypermutation.
J Exp Med. 2012 Jul 2;209(7):1379-89. doi: 10.1084/jem.20112253. Epub 2012 Jun 4.
10
Hijacked DNA repair proteins and unchained DNA polymerases.
Philos Trans R Soc Lond B Biol Sci. 2009 Mar 12;364(1517):605-11. doi: 10.1098/rstb.2008.0188.

引用本文的文献

1
Molecular mechanisms of DNA lesion and repair during antibody somatic hypermutation.
Sci China Life Sci. 2024 Nov;67(11):2344-2353. doi: 10.1007/s11427-024-2615-1. Epub 2024 Jul 23.
3
Genetic modifiers of repeat expansion disorders.
Emerg Top Life Sci. 2023 Dec 14;7(3):325-337. doi: 10.1042/ETLS20230015.
4
DNA repair mechanisms that promote insertion-deletion events during immunoglobulin gene diversification.
Sci Immunol. 2023 Mar 31;8(81):eade1167. doi: 10.1126/sciimmunol.ade1167. Epub 2023 Mar 24.
5
Unravelling the instability of mutational signatures extraction archetypal analysis.
Front Genet. 2023 Jan 4;13:1049501. doi: 10.3389/fgene.2022.1049501. eCollection 2022.
6
Hereditary Colorectal Cancer: State of the Art in Lynch Syndrome.
Cancers (Basel). 2022 Dec 23;15(1):75. doi: 10.3390/cancers15010075.
7
Contribution of rare mutational outcomes to broadly neutralizing antibodies.
Acta Biochim Biophys Sin (Shanghai). 2022 May 25;54(6):820-827. doi: 10.3724/abbs.2022065.
8
A Human MSH6 Germline Variant Associated With Systemic Lupus Erythematosus Induces Lupus-like Disease in Mice.
ACR Open Rheumatol. 2022 Sep;4(9):760-770. doi: 10.1002/acr2.11471. Epub 2022 Jun 16.
9
The Role of DNA Repair in Immunological Diversity: From Molecular Mechanisms to Clinical Ramifications.
Front Immunol. 2022 Apr 1;13:834889. doi: 10.3389/fimmu.2022.834889. eCollection 2022.
10
DNA folds threaten genetic stability and can be leveraged for chemotherapy.
RSC Chem Biol. 2020 Sep 30;2(1):47-76. doi: 10.1039/d0cb00151a. eCollection 2021 Feb 1.

本文引用的文献

1
Non-canonical actions of mismatch repair.
DNA Repair (Amst). 2016 Feb;38:102-109. doi: 10.1016/j.dnarep.2015.11.020. Epub 2015 Dec 2.
2
Epigenetic targeting of activation-induced cytidine deaminase.
Proc Natl Acad Sci U S A. 2014 Dec 30;111(52):18667-72. doi: 10.1073/pnas.1420575111. Epub 2014 Dec 15.
4
High-throughput mutagenesis reveals functional determinants for DNA targeting by activation-induced deaminase.
Nucleic Acids Res. 2014 Sep;42(15):9964-75. doi: 10.1093/nar/gku689. Epub 2014 Jul 26.
5
Differential expression of APE1 and APE2 in germinal centers promotes error-prone repair and A:T mutations during somatic hypermutation.
Proc Natl Acad Sci U S A. 2014 Jun 24;111(25):9217-22. doi: 10.1073/pnas.1405590111. Epub 2014 Jun 9.
7
Refining the Neuberger model: Uracil processing by activated B cells.
Eur J Immunol. 2014 Jul;44(7):1913-6. doi: 10.1002/eji.201444813. Epub 2014 Jun 30.
8
Hydrolytic function of Exo1 in mammalian mismatch repair.
Nucleic Acids Res. 2014 Jun;42(11):7104-12. doi: 10.1093/nar/gku420. Epub 2014 May 14.
9
Biochemical characterization of a cancer-associated E109K missense variant of human exonuclease 1.
Nucleic Acids Res. 2014 Jun;42(11):7096-103. doi: 10.1093/nar/gku419. Epub 2014 May 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验