Zhang Di, Chen Peng, Zheng Chun-Hou, Xia Junfeng
Institute of Health Sciences, School of Computer Science and Technology, Anhui University, Hefei, Anhui 230601, China.
Co-Innovation Center for Information Supply and Assurance Technology, Anhui University, Hefei, Anhui 230601, China.
Oncotarget. 2016 Jan 26;7(4):4298-309. doi: 10.18632/oncotarget.6774.
Identification of cancer subtypes and associated molecular drivers is critically important for understanding tumor heterogeneity and seeking effective clinical treatment. In this study, we introduced a simple but efficient multistep procedure to define ovarian cancer types and identify core networks/pathways and driver genes for each subtype by integrating multiple data sources, including mRNA expression, microRNA expression, copy number variation, and protein-protein interaction data. Applying similarity network fusion approach to a patient cohort with 379 ovarian cancer samples, we found two distinct integrated cancer subtypes with different survival profiles. For each ovarian cancer subtype, we explored the candidate oncogenic processes and driver genes by using a network-based approach. Our analysis revealed that alterations in DLST module involved in metabolism pathway and NDRG1 module were common between the two subtypes. However, alterations in the RB signaling pathway drove distinct molecular and clinical phenotypes in different ovarian cancer subtypes. This study provides a computational framework to harness the full potential of large-scale genomic data for discovering ovarian cancer subtype-specific network modules and candidate drivers. The framework may also be used to identify new therapeutic targets in a subset of ovarian cancers, for which limited therapeutic opportunities currently exist.
识别癌症亚型及其相关分子驱动因素对于理解肿瘤异质性和寻求有效的临床治疗至关重要。在本研究中,我们引入了一种简单但高效的多步骤程序,通过整合多种数据源(包括mRNA表达、microRNA表达、拷贝数变异和蛋白质-蛋白质相互作用数据)来定义卵巢癌类型,并识别每种亚型的核心网络/通路和驱动基因。将相似性网络融合方法应用于一个包含379个卵巢癌样本的患者队列,我们发现了两种具有不同生存特征的明显的综合癌症亚型。对于每种卵巢癌亚型,我们使用基于网络的方法探索了候选致癌过程和驱动基因。我们的分析表明,参与代谢途径的DLST模块和NDRG1模块的改变在两种亚型中都很常见。然而,RB信号通路的改变在不同的卵巢癌亚型中驱动了不同的分子和临床表型。本研究提供了一个计算框架,以充分利用大规模基因组数据的潜力来发现卵巢癌亚型特异性网络模块和候选驱动因素。该框架还可用于识别一部分目前治疗机会有限的卵巢癌中的新治疗靶点。