Maxwell Scott E, Cole David A, Mitchell Melissa A
a University of Notre Dame.
b Vanderbilt University.
Multivariate Behav Res. 2011 Sep 30;46(5):816-41. doi: 10.1080/00273171.2011.606716.
Maxwell and Cole (2007) showed that cross-sectional approaches to mediation typically generate substantially biased estimates of longitudinal parameters in the special case of complete mediation. However, their results did not apply to the more typical case of partial mediation. We extend their previous work by showing that substantial bias can also occur with partial mediation. In particular, cross-sectional analyses can imply the existence of a substantial indirect effect even when the true longitudinal indirect effect is zero. Thus, a variable that is found to be a strong mediator in a cross-sectional analysis may not be a mediator at all in a longitudinal analysis. In addition, we show that very different combinations of longitudinal parameter values can lead to essentially identical cross-sectional correlations, raising serious questions about the interpretability of cross-sectional mediation data. More generally, researchers are encouraged to consider a wide variety of possible mediation models beyond simple cross-sectional models, including but not restricted to autoregressive models of change.
麦克斯韦和科尔(2007年)指出,在完全中介的特殊情况下,中介效应的横截面研究方法通常会产生对纵向参数的大幅偏差估计。然而,他们的研究结果并不适用于更典型的部分中介情况。我们扩展了他们之前的研究,表明部分中介也可能出现大幅偏差。具体而言,横截面分析可能意味着存在显著的间接效应,即使真实的纵向间接效应为零。因此,在横截面分析中被发现是强中介变量的变量,在纵向分析中可能根本不是中介变量。此外,我们表明,纵向参数值的非常不同的组合可以导致基本相同的横截面相关性,这对横截面中介数据的可解释性提出了严重质疑。更一般地说,鼓励研究人员考虑除简单横截面模型之外的各种可能的中介模型,包括但不限于自回归变化模型。