Suppr超能文献

纵向中介效应横断面分析中的偏差:自回归模型下的部分中介和完全中介效应

Bias in Cross-Sectional Analyses of Longitudinal Mediation: Partial and Complete Mediation Under an Autoregressive Model.

作者信息

Maxwell Scott E, Cole David A, Mitchell Melissa A

机构信息

a University of Notre Dame.

b Vanderbilt University.

出版信息

Multivariate Behav Res. 2011 Sep 30;46(5):816-41. doi: 10.1080/00273171.2011.606716.

Abstract

Maxwell and Cole (2007) showed that cross-sectional approaches to mediation typically generate substantially biased estimates of longitudinal parameters in the special case of complete mediation. However, their results did not apply to the more typical case of partial mediation. We extend their previous work by showing that substantial bias can also occur with partial mediation. In particular, cross-sectional analyses can imply the existence of a substantial indirect effect even when the true longitudinal indirect effect is zero. Thus, a variable that is found to be a strong mediator in a cross-sectional analysis may not be a mediator at all in a longitudinal analysis. In addition, we show that very different combinations of longitudinal parameter values can lead to essentially identical cross-sectional correlations, raising serious questions about the interpretability of cross-sectional mediation data. More generally, researchers are encouraged to consider a wide variety of possible mediation models beyond simple cross-sectional models, including but not restricted to autoregressive models of change.

摘要

麦克斯韦和科尔(2007年)指出,在完全中介的特殊情况下,中介效应的横截面研究方法通常会产生对纵向参数的大幅偏差估计。然而,他们的研究结果并不适用于更典型的部分中介情况。我们扩展了他们之前的研究,表明部分中介也可能出现大幅偏差。具体而言,横截面分析可能意味着存在显著的间接效应,即使真实的纵向间接效应为零。因此,在横截面分析中被发现是强中介变量的变量,在纵向分析中可能根本不是中介变量。此外,我们表明,纵向参数值的非常不同的组合可以导致基本相同的横截面相关性,这对横截面中介数据的可解释性提出了严重质疑。更一般地说,鼓励研究人员考虑除简单横截面模型之外的各种可能的中介模型,包括但不限于自回归变化模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验