Shiman Farid, Irastorza-Landa Nerea, Sarasola-Sanz Andrea, Spuler Martin, Birbaumer Niels, Ramos-Murguialday Ander
Annu Int Conf IEEE Eng Med Biol Soc. 2015;2015:1922-5. doi: 10.1109/EMBC.2015.7318759.
In recent years, there has been an increasing interest in using electroencephalographic (EEG) activity to close the loop between brain oscillations and movement to induce functional motor rehabilitation. Rehabilitation robots or exoskeletons have been controlled using EEG activity. However, all studies have used a 2-class or one-dimensional decoding scheme. In this study we investigated EEG decoding of 5 functional movements of the same limb towards an online scenario. Six healthy participants performed a three-dimensional center-out reaching task based on direction movements (four directions and rest) wearing a 32-channel EEG cap. A BCI design based on multiclass extensions of Spectrally Weighted Common Spatial Patterns (Spec-CSP) and a linear discriminant analysis (LDA) classifier was developed and tested offline. The decoding accuracy was 5-fold cross-validated. A decoding accuracy of 39.5% on average for all the six subjects was obtained (chance level being 20%). The results of the current study demonstrate multiple functional movements decoding (significantly higher than chance level) from the same limb using EEG data. This study represents first steps towards a same limb multi degree of freedom (DOF) online EEG based BCI for motor restoration.
近年来,利用脑电图(EEG)活动来闭合大脑振荡与运动之间的环路以诱导功能性运动康复的兴趣日益浓厚。康复机器人或外骨骼已通过EEG活动进行控制。然而,所有研究都采用了两类或一维解码方案。在本研究中,我们针对在线场景研究了同一肢体的5种功能性运动的EEG解码。六名健康参与者戴着32通道EEG帽,基于方向运动(四个方向和休息)执行三维中心向外伸展任务。开发了一种基于频谱加权公共空间模式(Spec-CSP)的多类扩展和线性判别分析(LDA)分类器的脑机接口(BCI)设计,并进行了离线测试。解码准确率采用5折交叉验证。六名受试者的平均解码准确率为39.5%(机遇水平为20%)。当前研究结果表明,利用EEG数据可对同一肢体进行多种功能性运动解码(显著高于机遇水平)。本研究代表了迈向基于EEG的同一肢体多自由度(DOF)在线脑机接口用于运动恢复的第一步。