Wollberg Jessica, Bähring Robert
Institut für Zelluläre und Integrative Physiologie, Zentrum für Experimentelle Medizin, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany.
Institut für Zelluläre und Integrative Physiologie, Zentrum für Experimentelle Medizin, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany.
Biophys J. 2016 Jan 5;110(1):157-75. doi: 10.1016/j.bpj.2015.10.046.
We studied the kinetics and structural determinants of closed-state inactivation (CSI) in Kv4.2 channels, considering a multistep process and the possibility that both intra- and intersubunit dynamic binding (i.e., loss and restoration of physical contact) may occur between the S4-S5 linker, including the initial S5 segment (S4S5), and the S6 gate. We expressed Kv4.2 channels in Xenopus oocytes and measured the onset of low-voltage inactivation under two-electrode voltage clamp. Indicative of a transitory state, the onset kinetics were best described by a double-exponential function. To examine the involvement of individual S4S5 and S6 amino acid residues in dynamic binding, we studied S4S5 and S6 single alanine mutants and corresponding double mutants. Both transitory and steady-state inactivation were modified by these mutations, and we quantified the mutational effects based on apparent affinities for the respective inactivated states. Double-mutant cycle analyses revealed strong functional coupling of the S6 residues V404 and I412 to all tested S4S5 residues. To examine whether dynamic S4S5/S6 binding occurs within individual α-subunits or between neighboring α-subunits, we performed a double-mutant cycle analysis with Kv4.2 tandem-dimer constructs. The constructs carried either an S4S5/S6 double mutation in the first α-subunit and no mutation in the second (concatenated) α-subunit or an S4S5 point mutation in the first α-subunit and an S6 point mutation in the second α-subunit. Our results support the notion that CSI in Kv4.2 channels is a multistep process that involves dynamic binding both within individual α-subunits and between neighboring α-subunits.
我们研究了Kv4.2通道中关闭状态失活(CSI)的动力学和结构决定因素,考虑了一个多步骤过程以及S4-S5连接子(包括初始S5片段,即S4S5)与S6门之间可能发生亚基内和亚基间动态结合(即物理接触的丧失和恢复)的可能性。我们在非洲爪蟾卵母细胞中表达Kv4.2通道,并在双电极电压钳制下测量低电压失活的起始情况。起始动力学表现为瞬态,最好用双指数函数来描述。为了研究单个S4S5和S6氨基酸残基在动态结合中的作用,我们研究了S4S5和S6的单个丙氨酸突变体以及相应的双突变体。这些突变改变了瞬态和稳态失活情况,我们基于对各自失活状态的表观亲和力对突变效应进行了量化。双突变循环分析揭示了S6残基V404和I412与所有测试的S4S5残基之间存在强功能耦合。为了研究动态S4S5/S6结合是发生在单个α亚基内还是相邻α亚基之间,我们用Kv4.2串联二聚体构建体进行了双突变循环分析。构建体在第一个α亚基中携带S4S5/S6双突变,而在第二个(串联的)α亚基中不携带突变,或者在第一个α亚基中携带S4S5点突变,在第二个α亚基中携带S6点突变。我们的结果支持这样一种观点,即Kv4.2通道中的CSI是一个多步骤过程,涉及单个α亚基内和相邻α亚基之间的动态结合。