Suppr超能文献

用于实时多叶准直器跟踪的具有广义剂量不足/过量约束的快速叶片拟合

Fast leaf-fitting with generalized underdose/overdose constraints for real-time MLC tracking.

作者信息

Moore Douglas, Ruan Dan, Sawant Amit

机构信息

Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, Texas 75390.

Department of Radiation Oncology, University of California, Los Angeles, California 90095.

出版信息

Med Phys. 2016 Jan;43(1):465. doi: 10.1118/1.4938586.

Abstract

PURPOSE

Real-time multileaf collimator (MLC) tracking is a promising approach to the management of intrafractional tumor motion during thoracic and abdominal radiotherapy. MLC tracking is typically performed in two steps: transforming a planned MLC aperture in response to patient motion and refitting the leaves to the newly generated aperture. One of the challenges of this approach is the inability to faithfully reproduce the desired motion-adapted aperture. This work presents an optimization-based framework with which to solve this leaf-fitting problem in real-time.

METHODS

This optimization framework is designed to facilitate the determination of leaf positions in real-time while accounting for the trade-off between coverage of the PTV and avoidance of organs at risk (OARs). Derived within this framework, an algorithm is presented that can account for general linear transformations of the planned MLC aperture, particularly 3D translations and in-plane rotations. This algorithm, together with algorithms presented in Sawant et al. ["Management of three-dimensional intrafraction motion through real-time DMLC tracking," Med. Phys. 35, 2050-2061 (2008)] and Ruan and Keall [Presented at the 2011 IEEE Power Engineering and Automation Conference (PEAM) (2011) (unpublished)], was applied to apertures derived from eight lung intensity modulated radiotherapy plans subjected to six-degree-of-freedom motion traces acquired from lung cancer patients using the kilovoltage intrafraction monitoring system developed at the University of Sydney. A quality-of-fit metric was defined, and each algorithm was evaluated in terms of quality-of-fit and computation time.

RESULTS

This algorithm is shown to perform leaf-fittings of apertures, each with 80 leaf pairs, in 0.226 ms on average as compared to 0.082 and 64.2 ms for the algorithms of Sawant et al., Ruan, and Keall, respectively. The algorithm shows approximately 12% improvement in quality-of-fit over the Sawant et al. approach, while performing comparably to Ruan and Keall.

CONCLUSIONS

This work improves upon the quality of the Sawant et al. approach, but does so without sacrificing run-time performance. In addition, using this framework allows for complex leaf-fitting strategies that can be used to account for PTV/OAR trade-off during real-time MLC tracking.

摘要

目的

实时多叶准直器(MLC)跟踪是一种很有前景的方法,用于在胸部和腹部放疗期间管理分次内肿瘤运动。MLC跟踪通常分两步进行:根据患者运动变换计划的MLC孔径,并将叶片重新拟合到新生成的孔径。这种方法的挑战之一是无法如实地再现所需的运动适应孔径。这项工作提出了一个基于优化的框架,用于实时解决这种叶片拟合问题。

方法

这个优化框架旨在便于实时确定叶片位置,同时考虑在计划靶体积(PTV)覆盖范围和避免危及器官(OARs)之间进行权衡。在此框架内推导得出一种算法,该算法可以考虑计划MLC孔径的一般线性变换,特别是三维平移和平面内旋转。该算法与Sawant等人[《通过实时动态多叶准直器跟踪管理三维分次内运动》,《医学物理》35,2050 - 2061(2008)]以及Ruan和Keall[在2011年IEEE电力工程与自动化会议(PEAM)上发表(2011)(未发表)]所提出的算法一起,应用于从八个肺癌调强放疗计划得出的孔径,这些计划受到使用悉尼大学开发的千伏分次内监测系统从肺癌患者获取的六自由度运动轨迹的影响。定义了一个拟合质量指标,并根据拟合质量和计算时间对每种算法进行评估。

结果

该算法平均在0.226毫秒内对每个具有80个叶片对的孔径进行叶片拟合,而Sawant等人、Ruan和Keall的算法分别为0.082毫秒和64.2毫秒。该算法在拟合质量上比Sawant等人的方法提高了约12%,同时与Ruan和Keall的算法表现相当。

结论

这项工作改进了Sawant等人方法的质量,但没有牺牲运行时性能。此外,使用这个框架允许采用复杂的叶片拟合策略,可用于在实时MLC跟踪期间考虑PTV/OAR的权衡。

相似文献

4
Potential improvements of lung and prostate MLC tracking investigated by treatment simulations.
Med Phys. 2018 May;45(5):2218-2229. doi: 10.1002/mp.12868. Epub 2018 Apr 6.
7
Dose domain regularization of MLC leaf patterns for highly complex IMRT plans.
Med Phys. 2015 Apr;42(4):1858-70. doi: 10.1118/1.4915286.
8
Management of three-dimensional intrafraction motion through real-time DMLC tracking.
Med Phys. 2008 May;35(5):2050-61. doi: 10.1118/1.2905355.
10
Dose-based optimisation for multi-leaf collimator tracking during radiation therapy.
Phys Med Biol. 2021 Mar 15;66(6):065027. doi: 10.1088/1361-6560/abe836.

引用本文的文献

2
Real-time auto-adaptive margin generation for MLC-tracked radiotherapy.
Phys Med Biol. 2017 Jan 7;62(1):186-201. doi: 10.1088/1361-6560/62/1/186. Epub 2016 Dec 17.

本文引用的文献

2
Six degrees-of-freedom prostate and lung tumor motion measurements using kilovoltage intrafraction monitoring.
Int J Radiat Oncol Biol Phys. 2015 Feb 1;91(2):368-75. doi: 10.1016/j.ijrobp.2014.09.040. Epub 2014 Nov 25.
3
Dynamic tumor tracking using the Elekta Agility MLC.
Med Phys. 2014 Nov;41(11):111719. doi: 10.1118/1.4899175.
4
Geometric accuracy of a novel gimbals based radiation therapy tumor tracking system.
Radiother Oncol. 2011 Mar;98(3):365-72. doi: 10.1016/j.radonc.2011.01.015.
8
Management of three-dimensional intrafraction motion through real-time DMLC tracking.
Med Phys. 2008 May;35(5):2050-61. doi: 10.1118/1.2905355.
9
A review of 3 current radiosurgery systems.
Surg Neurol. 2006 Dec;66(6):559-64. doi: 10.1016/j.surneu.2006.08.002.
10
Geometric accuracy of a real-time target tracking system with dynamic multileaf collimator tracking system.
Int J Radiat Oncol Biol Phys. 2006 Aug 1;65(5):1579-84. doi: 10.1016/j.ijrobp.2006.04.038.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验