Valderrama Alejandro, Reynoso Radamés, Gómez Raúl W, Marquina Vivianne
Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada Unidad Legaria, Instituto Politécnico Nacional, Calzada Legaria No. 694, Colonia Irrigación, Delegación Miguel Hidalgo, C. P. 11500, D. F., Mexico.
Facultad de Ciencias, Universidad Nacional Autónoma de México, Avenida Universidad No. 3000, Ciudad Universitaria, Delegación Coyoacán, C. P. 04510, D. F., Mexico.
J Mol Model. 2016 Jan;22(1):28. doi: 10.1007/s00894-015-2898-4. Epub 2016 Jan 9.
This paper inquires the C60 capabilities to contain radio-iodide ((131)I2) molecules. The encapsulation conditions are investigated applying first principles method to simulate with geometric optimizations and molecular dynamics at 310 K and atmospheric pressure. We find that the n(131)I2@C60 system, where n = 1, 2, 3…, is stable if the content does not exceed three molecules of radio-iodide. The application of density functional theory allows us to determine that, the nanocapsules content limit is related with the amount of charge that is transferred from the iodine (131)I2 molecules to the carbon atoms in the fullerene surface. The Mulliken population analysis reveals that the excess of charge increases the repulsive forces between atoms and the bond length average in the C60 structure. The weakened bonds easily break and will critically damage the encapsulation properties. Additionally, we test the interaction nanocapsules with different amounts of radioactive iodine diatomic molecules content with calcium atoms, and find that only the fullerene containing one radioactive iodine diatomic molecule was able to interact with up to nine atoms of calcium without disrupting or cracking. Other fullerenes with two and three radio iodine diatomic molecules cannot resist the interaction with a single calcium atom without cracking or being broken.
本文探究了C60容纳放射性碘分子((131)I2)的能力。通过第一性原理方法进行几何优化以及在310 K和大气压下进行分子动力学模拟,对封装条件展开了研究。我们发现,对于n(131)I2@C60体系(其中n = 1、2、3…),若放射性碘分子含量不超过三个,则该体系是稳定的。密度泛函理论的应用使我们能够确定,纳米胶囊的含量限制与从碘(131)I2分子转移到富勒烯表面碳原子上的电荷量有关。Mulliken布居分析表明,电荷过量会增加原子间的排斥力以及C60结构中的平均键长。键的弱化容易导致断裂,进而严重损害封装性能。此外,我们测试了含有不同数量放射性碘双原子分子的纳米胶囊与钙原子之间的相互作用,发现只有含有一个放射性碘双原子分子的富勒烯能够与多达九个钙原子相互作用而不发生破坏或破裂。其他含有两个和三个放射性碘双原子分子的富勒烯在与单个钙原子相互作用时无法抵抗而不发生破裂或损坏。