Suppr超能文献

稳健性并非维度:成分可比性系数对样本量的敏感性研究

Robustness is Not Dimensionality: On the Sensitivity of Component Comparability Coefficients to Sample Size.

作者信息

Lanning K

出版信息

Multivariate Behav Res. 1996 Jan 1;31(1):33-46. doi: 10.1207/s15327906mbr3101_3.

Abstract

Everett (1983) has proposed that, under certain conditions, replicability provides an answer to the question of the number of dimensions to retain in component analysis. But replicability must logically be a function of sample size as well as dimensionality. In the present study, the effects of sample size and sample composition are systematically examined on the replicability of principal components. Using observer ratings of personality from the California Adult Q-Set, comparability coefficients are examined in 192 series of principal components analyses. Results indicate that (a) once one has 20 or more subjects per item, the most comparable solution typically has as many components as items; (b) if these full solutions are ignored, there is still a substantial relationship between prescribed number of components and sample size when one uses either the .90 or .85 threshold decision rules and (c) other criteria for determining the number of components to retain, such as the Minimum Average Partial (MAP) rule, do not show the same relationship with sample size. These results indicate that dimensionality cannot be inferred from component robustness, as these are empirically as well as logically separate matters.

摘要

埃弗雷特(1983年)提出,在某些条件下,可重复性为成分分析中要保留的维度数量问题提供了答案。但从逻辑上讲,可重复性必定是样本量以及维度的函数。在本研究中,系统地考察了样本量和样本构成对主成分可重复性的影响。利用来自《加利福尼亚成人Q分类表》的人格观察者评分,在192组主成分分析中考察了可比性系数。结果表明:(a) 一旦每个项目有20个或更多的受试者,最具可比性的解决方案通常具有与项目数量相同数量的成分;(b) 如果忽略这些完整的解决方案,当使用0.90或0.85的阈值决策规则时,规定的成分数量与样本量之间仍然存在显著关系;(c) 其他用于确定要保留的成分数量的标准,如最小平均偏相关(MAP)规则,与样本量没有显示出相同的关系。这些结果表明,不能从成分稳健性推断维度,因为从经验和逻辑上讲,它们是不同的问题。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验