Bučko Tomáš, Lebègue Sébastien, Gould Tim, Ángyán János G
Department of Physical and Theoretical Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská Dolina, Ilkovičova 6, SK-84215 Bratislava, Slovakia. Institute of Inorganic Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, SK-84236 Bratislava, Slovakia.
J Phys Condens Matter. 2016 Feb 3;28(4):045201. doi: 10.1088/0953-8984/28/4/045201. Epub 2016 Jan 12.
The energy and gradient expressions for the many-body dispersion scheme (MBD@rsSCS) of Ambrosetti et al (2014 J. Chem. Phys. 140 18A508) needed for an efficient implementation of the method for systems under periodic boundary conditions are reported. The energy is expressed as a sum of contributions from points sampled in the first Brillouin zone, in close analogy with planewave implementations of the RPA method for electrons in the dielectric matrix formulation. By avoiding the handling of large supercells, considerable computational savings can be achieved for materials with small and medium sized unit cells. The new implementation has been tested and used for geometry optimization and energy calculations of inorganic and molecular crystals, and layered materials.
报道了安布罗塞蒂等人(2014年《化学物理杂志》140卷,18A508)提出的多体色散方案(MBD@rsSCS)在周期边界条件下系统方法有效实施所需的能量和梯度表达式。能量表示为在第一布里渊区采样点贡献的总和,这与介电矩阵公式中电子的RPA方法的平面波实现非常相似。通过避免处理大的超胞,对于中小尺寸晶胞的材料可以实现可观的计算节省。新的实现方法已经经过测试,并用于无机和分子晶体以及层状材料的几何优化和能量计算。