Suppr超能文献

无喀耳刻效应的熵驱动酶催化作用

Enzyme catalysis by entropy without Circe effect.

作者信息

Kazemi Masoud, Himo Fahmi, Åqvist Johan

机构信息

Department of Cell and Molecular Biology, Uppsala University, SE-751 24 Uppsala, Sweden;

Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden.

出版信息

Proc Natl Acad Sci U S A. 2016 Mar 1;113(9):2406-11. doi: 10.1073/pnas.1521020113. Epub 2016 Jan 11.

Abstract

Entropic effects have often been invoked to explain the extraordinary catalytic power of enzymes. In particular, the hypothesis that enzymes can use part of the substrate-binding free energy to reduce the entropic penalty associated with the subsequent chemical transformation has been very influential. The enzymatic reaction of cytidine deaminase appears to be a distinct example. Here, substrate binding is associated with a significant entropy loss that closely matches the activation entropy penalty for the uncatalyzed reaction in water, whereas the activation entropy for the rate-limiting catalytic step in the enzyme is close to zero. Herein, we report extensive computer simulations of the cytidine deaminase reaction and its temperature dependence. The energetics of the catalytic reaction is first evaluated by density functional theory calculations. These results are then used to parametrize an empirical valence bond description of the reaction, which allows efficient sampling by molecular dynamics simulations and computation of Arrhenius plots. The thermodynamic activation parameters calculated by this approach are in excellent agreement with experimental data and indeed show an activation entropy close to zero for the rate-limiting transition state. However, the origin of this effect is a change of reaction mechanism compared the uncatalyzed reaction. The enzyme operates by hydroxide ion attack, which is intrinsically associated with a favorable activation entropy. Hence, this has little to do with utilization of binding free energy to pay the entropic penalty but rather reflects how a preorganized active site can stabilize a reaction path that is not operational in solution.

摘要

熵效应常常被用来解释酶的非凡催化能力。特别是,酶可以利用部分底物结合自由能来减少与后续化学转化相关的熵罚的假说极具影响力。胞苷脱氨酶的酶促反应似乎就是一个独特的例子。在这里,底物结合伴随着显著的熵损失,这与水中未催化反应的活化熵罚紧密匹配,而酶中限速催化步骤的活化熵接近于零。在此,我们报告了胞苷脱氨酶反应及其温度依赖性的广泛计算机模拟。首先通过密度泛函理论计算评估催化反应的能量学。然后利用这些结果对反应的经验价键描述进行参数化,这使得通过分子动力学模拟进行有效采样以及计算阿伦尼乌斯图成为可能。通过这种方法计算得到的热力学活化参数与实验数据高度吻合,并且确实显示限速过渡态的活化熵接近于零。然而,这种效应的起源是与未催化反应相比反应机制发生了变化。该酶通过氢氧根离子攻击起作用,这本质上与有利的活化熵相关。因此,这与利用结合自由能来支付熵罚关系不大,而是反映了一个预组织的活性位点如何能够稳定在溶液中不起作用的反应路径。

相似文献

1
Enzyme catalysis by entropy without Circe effect.
Proc Natl Acad Sci U S A. 2016 Mar 1;113(9):2406-11. doi: 10.1073/pnas.1521020113. Epub 2016 Jan 11.
2
Entropy and Enzyme Catalysis.
Acc Chem Res. 2017 Feb 21;50(2):199-207. doi: 10.1021/acs.accounts.6b00321. Epub 2017 Feb 7.
5
Catalysis by entropic effects: the action of cytidine deaminase on 5,6-dihydrocytidine.
Biochemistry. 2002 Mar 26;41(12):3925-30. doi: 10.1021/bi011696r.
6
Enzyme surface rigidity tunes the temperature dependence of catalytic rates.
Proc Natl Acad Sci U S A. 2016 Jul 12;113(28):7822-7. doi: 10.1073/pnas.1605237113. Epub 2016 Jun 27.
7
Thermodynamics of the Purine Nucleoside Phosphorylase Reaction Revealed by Computer Simulations.
Biochemistry. 2017 Jan 10;56(1):306-312. doi: 10.1021/acs.biochem.6b00967. Epub 2016 Dec 27.
8
Thermodynamic analysis of remote substrate binding energy in 3α-hydroxysteroid dehydrogenase/carbonyl reductase catalysis.
Chem Biol Interact. 2019 Apr 1;302:183-189. doi: 10.1016/j.cbi.2019.02.011. Epub 2019 Feb 20.
9
15N kinetic isotope effects on uncatalyzed and enzymatic deamination of cytidine.
Biochemistry. 2002 Jan 8;41(1):415-21. doi: 10.1021/bi011410i.
10
How important are entropic contributions to enzyme catalysis?
Proc Natl Acad Sci U S A. 2000 Oct 24;97(22):11899-904. doi: 10.1073/pnas.97.22.11899.

引用本文的文献

2
Bias Dependence of the Transition State of the Hydrogen Evolution Reaction.
J Am Chem Soc. 2025 Feb 12;147(6):5472-5485. doi: 10.1021/jacs.4c18638. Epub 2025 Feb 3.
3
Computer Simulations of the Temperature Dependence of Enzyme Reactions.
J Chem Theory Comput. 2025 Feb 11;21(3):1017-1028. doi: 10.1021/acs.jctc.4c01733. Epub 2025 Jan 30.
4
Solution Ionic Strength Can Modulate Functional Loop Conformations in Dihydrofolate Reductase.
J Phys Chem B. 2024 May 2;128(17):4111-4122. doi: 10.1021/acs.jpcb.4c00677. Epub 2024 Apr 23.
5
Why Do Empirical Valence Bond Simulations Yield Accurate Arrhenius Plots?
J Chem Theory Comput. 2024 Mar 26;20(6):2582-2591. doi: 10.1021/acs.jctc.4c00126. Epub 2024 Mar 7.
6
Perspectives on Computational Enzyme Modeling: From Mechanisms to Design and Drug Development.
ACS Omega. 2024 Feb 8;9(7):7393-7412. doi: 10.1021/acsomega.3c09084. eCollection 2024 Feb 20.
7
Accurate Computation of Thermodynamic Activation Parameters in the Chorismate Mutase Reaction from Empirical Valence Bond Simulations.
J Chem Theory Comput. 2024 Jan 9;20(1):451-458. doi: 10.1021/acs.jctc.3c01105. Epub 2023 Dec 19.
8
Enzyme dynamics-a brief review.
Biophys Rev. 2023 Jun 23;15(3):317-320. doi: 10.1007/s12551-023-01070-9. eCollection 2023 Jun.
9
The Quantum Chemical Cluster Approach in Biocatalysis.
Acc Chem Res. 2023 Apr 18;56(8):938-947. doi: 10.1021/acs.accounts.2c00795. Epub 2023 Mar 28.
10
Status report on the quantum chemical cluster approach for modeling enzyme reactions.
Commun Chem. 2022 Mar 8;5(1):29. doi: 10.1038/s42004-022-00642-2.

本文引用的文献

1
Revised Basis Sets for the LANL Effective Core Potentials.
J Chem Theory Comput. 2008 Jul;4(7):1029-31. doi: 10.1021/ct8000409.
3
Reaction mechanism of zinc-dependent cytosine deaminase from Escherichia coli: a quantum-chemical study.
J Phys Chem B. 2014 May 29;118(21):5644-52. doi: 10.1021/jp501228s. Epub 2014 May 15.
4
Effect of the damping function in dispersion corrected density functional theory.
J Comput Chem. 2011 May;32(7):1456-65. doi: 10.1002/jcc.21759. Epub 2011 Mar 1.
7
Basis set exchange: a community database for computational sciences.
J Chem Inf Model. 2007 May-Jun;47(3):1045-52. doi: 10.1021/ci600510j. Epub 2007 Apr 12.
8
Thermodynamic properties of enzyme-catalyzed reactions involving cytosine, uracil, thymine, and their nucleosides and nucleotides.
Biophys Chem. 2007 Apr;127(1-2):91-6. doi: 10.1016/j.bpc.2006.12.010. Epub 2007 Jan 22.
9
Catalysis and linear free energy relationships in aspartic proteases.
Biochemistry. 2006 Jun 27;45(25):7709-23. doi: 10.1021/bi060131y.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验