Suppr超能文献

使用成像和机器学习方法研究抑郁症。

Studying depression using imaging and machine learning methods.

作者信息

Patel Meenal J, Khalaf Alexander, Aizenstein Howard J

机构信息

Department of Bioengineering, University of Pittsburgh, PA, USA.

University of Pittsburgh School of Medicine, PA, USA.

出版信息

Neuroimage Clin. 2015 Nov 10;10:115-23. doi: 10.1016/j.nicl.2015.11.003. eCollection 2016.

Abstract

Depression is a complex clinical entity that can pose challenges for clinicians regarding both accurate diagnosis and effective timely treatment. These challenges have prompted the development of multiple machine learning methods to help improve the management of this disease. These methods utilize anatomical and physiological data acquired from neuroimaging to create models that can identify depressed patients vs. non-depressed patients and predict treatment outcomes. This article (1) presents a background on depression, imaging, and machine learning methodologies; (2) reviews methodologies of past studies that have used imaging and machine learning to study depression; and (3) suggests directions for future depression-related studies.

摘要

抑郁症是一种复杂的临床病症,在准确诊断和及时有效治疗方面会给临床医生带来挑战。这些挑战促使了多种机器学习方法的发展,以帮助改善这种疾病的管理。这些方法利用从神经成像中获取的解剖学和生理学数据来创建模型,从而能够识别抑郁症患者与非抑郁症患者,并预测治疗结果。本文(1)介绍抑郁症、成像和机器学习方法的背景知识;(2)回顾过去使用成像和机器学习研究抑郁症的研究方法;(3)提出未来抑郁症相关研究的方向。

相似文献

1
Studying depression using imaging and machine learning methods.
Neuroimage Clin. 2015 Nov 10;10:115-23. doi: 10.1016/j.nicl.2015.11.003. eCollection 2016.
3
Machine learning in major depression: From classification to treatment outcome prediction.
CNS Neurosci Ther. 2018 Nov;24(11):1037-1052. doi: 10.1111/cns.13048. Epub 2018 Aug 23.
4
Machine learning algorithm accurately detects fMRI signature of vulnerability to major depression.
Psychiatry Res. 2015 Aug 30;233(2):289-91. doi: 10.1016/j.pscychresns.2015.07.001. Epub 2015 Jul 5.
5
8
9
Application of machine learning classification for structural brain MRI in mood disorders: Critical review from a clinical perspective.
Prog Neuropsychopharmacol Biol Psychiatry. 2018 Jan 3;80(Pt B):71-80. doi: 10.1016/j.pnpbp.2017.06.024. Epub 2017 Jun 23.
10
Computational methods for corpus callosum segmentation on MRI: A systematic literature review.
Comput Methods Programs Biomed. 2018 Feb;154:25-35. doi: 10.1016/j.cmpb.2017.10.025. Epub 2017 Nov 8.

引用本文的文献

3
Do withdrawal symptoms predict depression relapse after antidepressant cessation?
Eur Arch Psychiatry Clin Neurosci. 2025 Apr 23. doi: 10.1007/s00406-025-02005-z.
4
Neural signatures of emotional biases predict clinical outcomes in difficult-to-treat depression.
Res Dir Depress. 2024 Oct 1;1:e21. doi: 10.1017/dep.2024.6. eCollection 2024.
5
An objective quantitative diagnosis of depression using a local-to-global multimodal fusion graph neural network.
Patterns (N Y). 2024 Nov 4;5(12):101081. doi: 10.1016/j.patter.2024.101081. eCollection 2024 Dec 13.
9
One size does not fit all: notable individual variation in brain activity correlates of antidepressant treatment response.
Front Psychiatry. 2024 Apr 2;15:1358018. doi: 10.3389/fpsyt.2024.1358018. eCollection 2024.
10
Neuroanatomy of post-stroke depression: the association between symptom clusters and lesion location.
Brain Commun. 2023 Oct 25;5(5):fcad275. doi: 10.1093/braincomms/fcad275. eCollection 2023.

本文引用的文献

1
White Matter Hyperintensity Accumulation During Treatment of Late-Life Depression.
Neuropsychopharmacology. 2015 Dec;40(13):3027-35. doi: 10.1038/npp.2015.158. Epub 2015 Jun 10.
2
Using biomarkers to predict treatment response in major depressive disorder: evidence from past and present studies.
Dialogues Clin Neurosci. 2014 Dec;16(4):539-44. doi: 10.31887/DCNS.2014.16.4/mthase.
3
Neuroimaging-based biomarkers for treatment selection in major depressive disorder.
Dialogues Clin Neurosci. 2014 Dec;16(4):479-90. doi: 10.31887/DCNS.2014.16.4/bdunlop.
4
5
Sparse network-based models for patient classification using fMRI.
Neuroimage. 2015 Jan 15;105:493-506. doi: 10.1016/j.neuroimage.2014.11.021. Epub 2014 Nov 15.
6
Magnetic resonance imaging predictors of treatment response in late-life depression.
J Geriatr Psychiatry Neurol. 2014 Mar;27(1):24-32. doi: 10.1177/0891988713516541. Epub 2013 Dec 30.
7
A review of peripheral biomarkers in major depression: the potential of inflammatory and oxidative stress biomarkers.
Prog Neuropsychopharmacol Biol Psychiatry. 2014 Jan 3;48:102-11. doi: 10.1016/j.pnpbp.2013.09.017. Epub 2013 Oct 5.
8
SCoRS--A Method Based on Stability for Feature Selection and Mapping inNeuroimaging [corrected].
IEEE Trans Med Imaging. 2014 Jan;33(1):85-98. doi: 10.1109/TMI.2013.2281398. Epub 2013 Sep 11.
9
A review of feature reduction techniques in neuroimaging.
Neuroinformatics. 2014 Apr;12(2):229-44. doi: 10.1007/s12021-013-9204-3.
10
Toward a neuroimaging treatment selection biomarker for major depressive disorder.
JAMA Psychiatry. 2013 Aug;70(8):821-9. doi: 10.1001/jamapsychiatry.2013.143.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验