Patel Meenal J, Khalaf Alexander, Aizenstein Howard J
Department of Bioengineering, University of Pittsburgh, PA, USA.
University of Pittsburgh School of Medicine, PA, USA.
Neuroimage Clin. 2015 Nov 10;10:115-23. doi: 10.1016/j.nicl.2015.11.003. eCollection 2016.
Depression is a complex clinical entity that can pose challenges for clinicians regarding both accurate diagnosis and effective timely treatment. These challenges have prompted the development of multiple machine learning methods to help improve the management of this disease. These methods utilize anatomical and physiological data acquired from neuroimaging to create models that can identify depressed patients vs. non-depressed patients and predict treatment outcomes. This article (1) presents a background on depression, imaging, and machine learning methodologies; (2) reviews methodologies of past studies that have used imaging and machine learning to study depression; and (3) suggests directions for future depression-related studies.
抑郁症是一种复杂的临床病症,在准确诊断和及时有效治疗方面会给临床医生带来挑战。这些挑战促使了多种机器学习方法的发展,以帮助改善这种疾病的管理。这些方法利用从神经成像中获取的解剖学和生理学数据来创建模型,从而能够识别抑郁症患者与非抑郁症患者,并预测治疗结果。本文(1)介绍抑郁症、成像和机器学习方法的背景知识;(2)回顾过去使用成像和机器学习研究抑郁症的研究方法;(3)提出未来抑郁症相关研究的方向。