Samarakoon Pubudu Saneth, Sorte Hanne Sørmo, Stray-Pedersen Asbjørg, Rødningen Olaug Kristin, Rognes Torbjørn, Lyle Robert
Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway.
Norwegian National Newborn Screening, Oslo University Hospital, Oslo, Norway.
BMC Genomics. 2016 Jan 14;17:51. doi: 10.1186/s12864-016-2374-2.
With advances in next generation sequencing technology and analysis methods, single nucleotide variants (SNVs) and indels can be detected with high sensitivity and specificity in exome sequencing data. Recent studies have demonstrated the ability to detect disease-causing copy number variants (CNVs) in exome sequencing data. However, exonic CNV prediction programs have shown high false positive CNV counts, which is the major limiting factor for the applicability of these programs in clinical studies.
We have developed a tool (cnvScan) to improve the clinical utility of computational CNV prediction in exome data. cnvScan can accept input from any CNV prediction program. cnvScan consists of two steps: CNV screening and CNV annotation. CNV screening evaluates CNV prediction using quality scores and refines this using an in-house CNV database, which greatly reduces the false positive rate. The annotation step provides functionally and clinically relevant information using multiple source datasets. We assessed the performance of cnvScan on CNV predictions from five different prediction programs using 64 exomes from Primary Immunodeficiency (PIDD) patients, and identified PIDD-causing CNVs in three individuals from two different families.
In summary, cnvScan reduces the time and effort required to detect disease-causing CNVs by reducing the false positive count and providing annotation. This improves the clinical utility of CNV detection in exome data.
随着下一代测序技术和分析方法的进步,单核苷酸变异(SNV)和插入缺失可以在全外显子组测序数据中以高灵敏度和特异性被检测到。最近的研究已经证明了在全外显子组测序数据中检测致病拷贝数变异(CNV)的能力。然而,外显子CNV预测程序显示出较高的假阳性CNV计数,这是这些程序在临床研究中应用的主要限制因素。
我们开发了一种工具(cnvScan)来提高全外显子组数据中计算CNV预测的临床实用性。cnvScan可以接受来自任何CNV预测程序的输入。cnvScan由两个步骤组成:CNV筛选和CNV注释。CNV筛选使用质量分数评估CNV预测,并使用内部CNV数据库对其进行优化,这大大降低了假阳性率。注释步骤使用多个源数据集提供功能和临床相关信息。我们使用来自原发性免疫缺陷(PIDD)患者的64个外显子组评估了cnvScan对来自五个不同预测程序的CNV预测的性能,并在来自两个不同家族的三个个体中鉴定出了导致PIDD的CNV。
总之,cnvScan通过减少假阳性计数并提供注释,减少了检测致病CNV所需的时间和精力。这提高了全外显子组数据中CNV检测的临床实用性。