Suppr超能文献

计算机断层扫描与骨生成-血管生成耦合的光学成像以评估颅骨自体骨和异体骨移植的整合情况

Computed Tomography and Optical Imaging of Osteogenesis-angiogenesis Coupling to Assess Integration of Cranial Bone Autografts and Allografts.

作者信息

Cohn Yakubovich Doron, Tawackoli Wafa, Sheyn Dmitriy, Kallai Ilan, Da Xiaoyu, Pelled Gadi, Gazit Dan, Gazit Zulma

机构信息

Skeletal Biotech Laboratory, The Hebrew University-Hadassah Faculty of Dental Medicine.

Department of Surgery, Cedars-Sinai Medical Center; Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center; Biomedical Imaging Research Institute, Cedars-Sinai Medical Center;

出版信息

J Vis Exp. 2015 Dec 22(106):e53459. doi: 10.3791/53459.

Abstract

A major parameter determining the success of a bone-grafting procedure is vascularization of the area surrounding the graft. We hypothesized that implantation of a bone autograft would induce greater bone regeneration by abundant blood vessel formation. To investigate the effect of the graft on neovascularization at the defect site, we developed a micro-computed tomography (µCT) approach to characterize newly forming blood vessels, which involves systemic perfusion of the animal with a polymerizing contrast agent. This method enables detailed vascular analysis of an organ in its entirety. Additionally, blood perfusion was assessed using fluorescence imaging (FLI) of a blood-borne fluorescent agent. Bone formation was quantified by FLI using a hydroxyapatite-targeted probe and µCT analysis. Stem cell recruitment was monitored by bioluminescence imaging (BLI) of transgenic mice that express luciferase under the control of the osteocalcin promoter. Here we describe and demonstrate preparation of the allograft, calvarial defect surgery, µCT scanning protocols for the neovascularization study and bone formation analysis (including the in vivo perfusion of contrast agent), and the protocol for data analysis. The 3D high-resolution analysis of vasculature demonstrated significantly greater angiogenesis in animals with implanted autografts, especially with respect to arteriole formation. Accordingly, blood perfusion was significantly higher in the autograft group by the 7(th) day after surgery. We observed superior bone mineralization and measured greater bone formation in animals that received autografts. Autograft implantation induced resident stem cell recruitment to the graft-host bone suture, where the cells differentiated into bone-forming cells between the 7(th) and 10(th) postoperative day. This finding means that enhanced bone formation may be attributed to the augmented vascular feeding that characterizes autograft implantation. The methods depicted may serve as an optimal tool to study bone regeneration in terms of tightly bounded bone formation and neovascularization.

摘要

决定骨移植手术成功与否的一个主要参数是移植骨周围区域的血管化。我们假设自体骨移植通过丰富的血管形成能诱导更大程度的骨再生。为了研究移植骨对缺损部位新生血管形成的影响,我们开发了一种微计算机断层扫描(µCT)方法来表征新形成的血管,该方法包括用聚合造影剂对动物进行全身灌注。这种方法能够对整个器官进行详细的血管分析。此外,使用血源荧光剂的荧光成像(FLI)评估血液灌注。通过使用羟基磷灰石靶向探针的FLI和µCT分析对骨形成进行定量。通过在骨钙素启动子控制下表达荧光素酶的转基因小鼠的生物发光成像(BLI)监测干细胞募集。在此,我们描述并展示了同种异体移植物的制备、颅骨缺损手术、用于新生血管形成研究和骨形成分析的µCT扫描方案(包括造影剂的体内灌注)以及数据分析方案。对血管系统的三维高分辨率分析表明,植入自体移植物的动物中血管生成明显更多,尤其是在小动脉形成方面。因此,术后第7天自体移植组的血液灌注明显更高。我们观察到接受自体移植物的动物骨矿化更好,骨形成量更大。自体移植物植入诱导驻留干细胞募集到移植物 - 宿主骨缝线处,术后第7天至第10天这些细胞分化为成骨细胞。这一发现意味着增强的骨形成可能归因于自体移植物植入所特有的增强的血管供血。所描述的方法可作为研究紧密相关的骨形成和新生血管形成方面骨再生的最佳工具。

相似文献

2
PTH promotes allograft integration in a calvarial bone defect.
Mol Pharm. 2013 Dec 2;10(12):4462-71. doi: 10.1021/mp400292p. Epub 2013 Nov 8.
6
Sequential changes in vessel formation and micro-vascular function during bone repair.
Acta Orthop. 2006 Jun;77(3):429-39. doi: 10.1080/17453670610046361.
7
The vascularization pattern of acellular nerve allografts after nerve repair in Sprague-Dawley rats.
Neurol Res. 2017 Nov;39(11):1014-1021. doi: 10.1080/01616412.2017.1365423. Epub 2017 Aug 24.
8
Type 2 diabetes impairs angiogenesis and osteogenesis in calvarial defects: MicroCT study in ZDF rats.
Bone. 2018 Jul;112:161-172. doi: 10.1016/j.bone.2018.04.009. Epub 2018 Apr 25.
9
Local delivery of FTY720 accelerates cranial allograft incorporation and bone formation.
Cell Tissue Res. 2012 Mar;347(3):553-66. doi: 10.1007/s00441-011-1217-3. Epub 2011 Aug 24.
10
Bioluminescent and micro-computed tomography imaging of bone repair induced by fibrin-binding growth factors.
Acta Biomater. 2014 Oct;10(10):4377-89. doi: 10.1016/j.actbio.2014.05.028. Epub 2014 Jun 4.

引用本文的文献

3
Bone-chip system to monitor osteogenic differentiation using optical imaging.
Microfluid Nanofluidics. 2019 Aug;23(8). doi: 10.1007/s10404-019-2261-7. Epub 2019 Jul 6.
4
Phenotyping the Microvasculature in Critical-Sized Calvarial Defects via Multimodal Optical Imaging.
Tissue Eng Part C Methods. 2018 Jul;24(7):430-440. doi: 10.1089/ten.TEC.2018.0090.

本文引用的文献

2
A prospective study on the morbidity resulting from calvarial bone harvesting for intraoral reconstruction.
Int J Oral Maxillofac Surg. 2015 Apr;44(4):513-7. doi: 10.1016/j.ijom.2014.12.007. Epub 2015 Jan 6.
3
5
PTH promotes allograft integration in a calvarial bone defect.
Mol Pharm. 2013 Dec 2;10(12):4462-71. doi: 10.1021/mp400292p. Epub 2013 Nov 8.
6
Application of cranial bone grafts for reconstruction of maxillofacial deformities.
Proc (Bayl Univ Med Cent). 2013 Jul;26(3):252-5. doi: 10.1080/08998280.2013.11928973.
8
Effect of calvarial burring on resorption of onlay cranial bone graft.
J Craniofac Surg. 2012 Sep;23(5):1495-8. doi: 10.1097/SCS.0b013e31824e63c5.
10
Adeno-associated virus-coated allografts: a novel approach for cranioplasty.
J Tissue Eng Regen Med. 2012 Nov;6(10):e43-50. doi: 10.1002/term.1594. Epub 2012 Sep 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验