Suppr超能文献

多层石墨烯中的可恢复滑移机制导致可重复的能量耗散。

Recoverable Slippage Mechanism in Multilayer Graphene Leads to Repeatable Energy Dissipation.

机构信息

Department of Mechanical Engineering, Northwestern University , 2145 Sheridan Road, Evanston, Illinois 60208-3111, United States.

Department of Mechanics and Engineering Science, College of Engineering, Peking University , Beijing 100871, China.

出版信息

ACS Nano. 2016 Feb 23;10(2):1820-8. doi: 10.1021/acsnano.5b04939. Epub 2016 Jan 27.

Abstract

Understanding the deformation mechanisms in multilayer graphene (MLG), an attractive material used in nanodevices as well as in the reinforcement of nanocomposites, is critical yet challenging due to difficulties in experimental characterization and the spatiotemporal limitations of atomistic modeling. In this study, we combine nanomechanical experiments with coarse-grained molecular dynamics (CG-MD) simulations to elucidate the mechanisms of deformation and failure of MLG sheets. Elastic properties of graphene sheets with one to three layers are measured using film deflection tests. A nonlinear behavior in the force vs deflection curves for MLGs is observed in both experiments and simulations: during loading/unloading cycles, MLGs dissipate energy through a "recoverable slippage" mechanism. The CG-MD simulations further reveal an atomic level interlayer slippage process and suggest that the dissipated energy scales with film perimeter. Moreover, our study demonstrates that the finite shear strength between individual layers could explain the experimentally measured size-dependent strength with thickness scaling in MLG sheets.

摘要

理解多层石墨烯(MLG)的变形机制至关重要,因为它是纳米器件中使用的一种有吸引力的材料,也是纳米复合材料增强的材料。然而,由于实验表征的困难和原子建模的时空限制,这一过程具有挑战性。在这项研究中,我们将纳米力学实验与粗粒化分子动力学(CG-MD)模拟相结合,以阐明 MLG 片的变形和失效机制。使用薄膜挠度试验测量具有一到三层的石墨烯片的弹性特性。在实验和模拟中都观察到 MLG 力与挠度曲线的非线性行为:在加载/卸载循环中,MLG 通过“可恢复滑移”机制耗散能量。CG-MD 模拟进一步揭示了层间滑移的原子级过程,并表明耗散的能量与膜周长成正比。此外,我们的研究表明,各层之间的有限剪切强度可以解释实验测量的 MLG 片厚度与强度的尺寸相关性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验