Suppr超能文献

利用偏度和首位数字现象识别心脏模型中的动态转变。

Using Skewness and the First-Digit Phenomenon to Identify Dynamical Transitions in Cardiac Models.

作者信息

Seenivasan Pavithraa, Easwaran Soumya, Sridhar Seshan, Sinha Sitabhra

机构信息

Theoretical Physics Group, The Institute of Mathematical Sciences Chennai, India.

Theoretical Physics Group, The Institute of Mathematical SciencesChennai, India; Scimergent Analytics and Education Pvt Ltd.Chennai, India.

出版信息

Front Physiol. 2016 Jan 11;6:390. doi: 10.3389/fphys.2015.00390. eCollection 2015.

Abstract

Disruptions in the normal rhythmic functioning of the heart, termed as arrhythmia, often result from qualitative changes in the excitation dynamics of the organ. The transitions between different types of arrhythmia are accompanied by alterations in the spatiotemporal pattern of electrical activity that can be measured by observing the time-intervals between successive excitations of different regions of the cardiac tissue. Using biophysically detailed models of cardiac activity we show that the distribution of these time-intervals exhibit a systematic change in their skewness during such dynamical transitions. Further, the leading digits of the normalized intervals appear to fit Benford's law better at these transition points. This raises the possibility of using these observations to design a clinical indicator for identifying changes in the nature of arrhythmia. More importantly, our results reveal an intriguing relation between the changing skewness of a distribution and its agreement with Benford's law, both of which have been independently proposed earlier as indicators of regime shift in dynamical systems.

摘要

心脏正常节律功能的紊乱,即心律失常,通常是由心脏兴奋动力学的质性变化引起的。不同类型心律失常之间的转变伴随着电活动时空模式的改变,这种改变可以通过观察心脏组织不同区域连续兴奋之间的时间间隔来测量。使用心脏活动的生物物理详细模型,我们表明,在这种动态转变过程中,这些时间间隔的分布在其偏度上呈现出系统性变化。此外,在这些转变点,归一化间隔的首位数字似乎更符合本福特定律。这增加了利用这些观察结果设计一种临床指标来识别心律失常性质变化的可能性。更重要的是,我们的结果揭示了分布变化的偏度与其与本福特定律的一致性之间的一种有趣关系,这两者此前都已被独立提出作为动态系统中状态转变的指标。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验