Suppr超能文献

SENS-IS,一种基于3D重建表皮的化学致敏效力量化模型:一项实验室间研究的重现性和预测性结果。

SENS-IS, a 3D reconstituted epidermis based model for quantifying chemical sensitization potency: Reproducibility and predictivity results from an inter-laboratory study.

作者信息

Cottrez Françoise, Boitel Elodie, Ourlin Jean-Claude, Peiffer Jean-Luc, Fabre Isabelle, Henaoui Imène-Sarah, Mari Bernard, Vallauri Ambre, Paquet Agnes, Barbry Pascal, Auriault Claude, Aeby Pierre, Groux Hervé

机构信息

ImmunoSearch, Grasse, France.

Agence nationale de sécurité du médicament, Vendargues, France.

出版信息

Toxicol In Vitro. 2016 Apr;32:248-60. doi: 10.1016/j.tiv.2016.01.007. Epub 2016 Jan 18.

Abstract

The SENS-IS test protocol for the in vitro detection of sensitizers is based on a reconstructed human skin model (Episkin) as the test system and on the analysis of the expression of a large panel of genes. Its excellent performance was initially demonstrated with a limited set of test chemicals. Further studies (described here) were organized to confirm these preliminary results and to obtain a detailed statistical analysis of the predictive capacity of the assay. A ring-study was thus organized and performed within three laboratories, using a test set of 19 blind coded chemicals. Data analysis indicated that the assay is robust, easily transferable and offers high predictivity and excellent within- and between-laboratories reproducibility. To further evaluate the predictivity of the test protocol according to Cooper statistics a comprehensive test set of 150 chemicals was then analyzed. Again, data analysis confirmed the excellent capacity of the SENS-IS assay for predicting both hazard and potency characteristics, confirming that this assay should be considered as a serious alternative to the available in vivo sensitization tests.

摘要

用于体外检测致敏剂的SENS-IS测试方案基于重建的人体皮肤模型(Episkin)作为测试系统,并基于对大量基因表达的分析。其卓越性能最初在一组有限的测试化学品中得到证明。随后组织了进一步的研究(在此描述)以证实这些初步结果,并对该检测方法的预测能力进行详细的统计分析。因此,在三个实验室中组织并进行了一项环式研究,使用一组由19种盲编码化学品组成的测试集。数据分析表明,该检测方法稳健、易于转移,具有高预测性以及出色的实验室内部和实验室之间的重现性。为了根据库珀统计数据进一步评估测试方案的预测性,随后分析了一组由150种化学品组成的综合测试集。数据分析再次证实了SENS-IS检测方法在预测危害和效力特征方面的卓越能力,确认该检测方法应被视为现有体内致敏测试的一种可靠替代方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验