Baselice Fabio, Ferraioli Giampaolo, Pascazio Vito
Dipartimento di Ingegneria, Università di Napoli Parthenope, Centro Direzionale di Napoli, Isola C4, 80143 Napoli, Italy.
Dipartimento di Scienze e Tecnologie, Università di Napoli Parthenope, Centro Direzionale di Napoli, Isola C4, 80143 Napoli, Italy.
Biomed Res Int. 2015;2015:154614. doi: 10.1155/2015/154614. Epub 2015 Dec 21.
Brain tissue segmentation in Magnetic Resonance Imaging is useful for a wide range of applications. Classical approaches exploit the gray levels image and implement criteria for differentiating regions. Within this paper a novel approach for brain tissue joint segmentation and classification is presented. Starting from the estimation of proton density and relaxation times, we propose a novel method for identifying the optimal decision regions. The approach exploits the statistical distribution of the involved signals in the complex domain. The technique, compared to classical threshold based ones, is able to globally improve the classification rate. The effectiveness of the approach is evaluated on both simulated and real datasets.
磁共振成像中的脑组织分割在广泛的应用中很有用。经典方法利用灰度图像并实施区分区域的标准。本文提出了一种用于脑组织联合分割和分类的新方法。从质子密度和弛豫时间的估计开始,我们提出了一种识别最佳决策区域的新方法。该方法利用了复域中相关信号的统计分布。与基于经典阈值的技术相比,该技术能够全局提高分类率。在模拟数据集和真实数据集上都评估了该方法的有效性。