Suppr超能文献

遗传和临床变量可识别 2 型糖尿病慢性肾脏病的预测因子。

Genetic and clinical variables identify predictors for chronic kidney disease in type 2 diabetes.

机构信息

Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.

Department of Endocrinology and Metabolism, Shanghai Clinical Center of Diabetes, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai, China.

出版信息

Kidney Int. 2016 Feb;89(2):411-20. doi: 10.1016/j.kint.2015.09.001. Epub 2016 Jan 6.

Abstract

Type 2 diabetes and chronic kidney disease (CKD) may share common risk factors. Here we used a 3-stage procedure to discover novel predictors of CKD by repeatedly applying a stepwise selection based on the Akaike information criterion to subsamples of a prospective complete-case cohort of 2755 patients. This cohort encompassed 25 clinical variables and 36 genetic variants associated with type 2 diabetes, obesity, or fasting plasma glucose. We compared the performance of the clinical, genetic, and clinico-genomic models and used net reclassification improvement to evaluate the impact of top selected genetic variants to the clinico-genomic model. Associations of selected genetic variants with CKD were validated in 2 independent cohorts followed by meta-analyses. Among the top 6 single-nucleotide polymorphisms selected from clinico-genomic data, three (rs478333 of G6PC2, rs7754840 and rs7756992 of CDKAL1) contributed toward the improvement of prediction performance. The variant rs478333 was associated with rapid decline (over 4% per year) in estimated glomerular filtration rate. In a meta-analysis of 2 replication cohorts, the variants rs478333 and rs7754840 showed significant associations with CKD after adjustment for conventional risk factors. Thus, this novel 3-stage approach to a clinico-genomic data set identified 3 novel genetic predictors of CKD in type 2 diabetes. This method can be applied to similar data sets containing clinical and genetic variables to select predictors for clinical outcomes.

摘要

2 型糖尿病和慢性肾脏病(CKD)可能具有共同的危险因素。在这里,我们使用 3 阶段程序,通过在一个前瞻性完整病例队列的子样本上反复应用基于赤池信息量准则的逐步选择,来发现 CKD 的新预测因子。该队列包含 25 个临床变量和 36 个与 2 型糖尿病、肥胖或空腹血糖相关的遗传变异。我们比较了临床、遗传和临床基因组模型的性能,并使用净重新分类改善来评估顶级遗传变异对临床基因组模型的影响。在随后的荟萃分析中,我们在 2 个独立队列中验证了选定遗传变异与 CKD 的关联。在从临床基因组数据中选择的前 6 个单核苷酸多态性中,有 3 个(G6PC2 的 rs478333、CDKAL1 的 rs7754840 和 rs7756992)有助于提高预测性能。变体 rs478333 与估计肾小球滤过率的快速下降(每年超过 4%)有关。在对 2 个复制队列的荟萃分析中,在调整了传统危险因素后,变体 rs478333 和 rs7754840 与 CKD 呈显著关联。因此,这种新的 3 阶段方法对临床基因组数据集确定了 2 型糖尿病 CKD 的 3 个新的遗传预测因子。该方法可应用于包含临床和遗传变量的类似数据集,以选择临床结果的预测因子。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验