Suppr超能文献

基于卷积神经网络的乳腺钼靶肿块病变分类的表征学习

Representation learning for mammography mass lesion classification with convolutional neural networks.

作者信息

Arevalo John, González Fabio A, Ramos-Pollán Raúl, Oliveira Jose L, Guevara Lopez Miguel Angel

机构信息

Universidad Nacional de Colombia, Bogotá, Colombia.

Universidad Industrial de Santander, Bucaramanga, Colombia.

出版信息

Comput Methods Programs Biomed. 2016 Apr;127:248-57. doi: 10.1016/j.cmpb.2015.12.014. Epub 2016 Jan 7.

Abstract

BACKGROUND AND OBJECTIVE

The automatic classification of breast imaging lesions is currently an unsolved problem. This paper describes an innovative representation learning framework for breast cancer diagnosis in mammography that integrates deep learning techniques to automatically learn discriminative features avoiding the design of specific hand-crafted image-based feature detectors.

METHODS

A new biopsy proven benchmarking dataset was built from 344 breast cancer patients' cases containing a total of 736 film mammography (mediolateral oblique and craniocaudal) views, representative of manually segmented lesions associated with masses: 426 benign lesions and 310 malignant lesions. The developed method comprises two main stages: (i) preprocessing to enhance image details and (ii) supervised training for learning both the features and the breast imaging lesions classifier. In contrast to previous works, we adopt a hybrid approach where convolutional neural networks are used to learn the representation in a supervised way instead of designing particular descriptors to explain the content of mammography images.

RESULTS

Experimental results using the developed benchmarking breast cancer dataset demonstrated that our method exhibits significant improved performance when compared to state-of-the-art image descriptors, such as histogram of oriented gradients (HOG) and histogram of the gradient divergence (HGD), increasing the performance from 0.787 to 0.822 in terms of the area under the ROC curve (AUC). Interestingly, this model also outperforms a set of hand-crafted features that take advantage of additional information from segmentation by the radiologist. Finally, the combination of both representations, learned and hand-crafted, resulted in the best descriptor for mass lesion classification, obtaining 0.826 in the AUC score.

CONCLUSIONS

A novel deep learning based framework to automatically address classification of breast mass lesions in mammography was developed.

摘要

背景与目的

乳腺影像病变的自动分类目前仍是一个未解决的问题。本文描述了一种用于乳腺钼靶摄影中乳腺癌诊断的创新表征学习框架,该框架集成了深度学习技术,可自动学习判别特征,避免了设计特定的基于手工制作的图像特征检测器。

方法

从344例乳腺癌患者的病例中构建了一个新的经活检证实的基准数据集,其中包含总共736张乳腺钼靶摄影(内外斜位和头尾位)图像,代表了与肿块相关的手动分割病变:426个良性病变和310个恶性病变。所开发的方法包括两个主要阶段:(i)预处理以增强图像细节;(ii)监督训练以学习特征和乳腺影像病变分类器。与先前的工作不同,我们采用了一种混合方法,其中卷积神经网络用于以监督方式学习表征,而不是设计特定的描述符来解释乳腺钼靶图像的内容。

结果

使用所开发的基准乳腺癌数据集进行的实验结果表明,与诸如方向梯度直方图(HOG)和梯度散度直方图(HGD)等当前最先进的图像描述符相比,我们的方法表现出显著提高的性能,在ROC曲线下面积(AUC)方面,性能从0.787提高到0.822。有趣的是,该模型还优于一组利用放射科医生分割的额外信息的手工制作特征。最后,学习到的数据和手工制作的数据的组合产生了用于肿块病变分类的最佳描述符,在AUC分数中获得了0.826。

结论

开发了一种基于深度学习的新颖框架,用于自动解决乳腺钼靶摄影中乳腺肿块病变的分类问题。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验