IEEE Trans Image Process. 2016 Mar;25(3):1382-95. doi: 10.1109/TIP.2016.2522339.
Pixelwise linear prediction using backward-adaptive least-squares or weighted least-squares estimation of prediction coefficients is currently among the state-of-the-art methods for lossless image compression. While current research is focused on mean intensity prediction of the pixel to be transmitted, best compression requires occurrence probability estimates for all possible intensity values. Apart from common heuristic approaches, we show how prediction error variance estimates can be derived from the (weighted) least-squares training region and how a complete probability distribution can be built based on an autoregressive image model. The analysis of image stationarity properties further allows deriving a novel formula for weight computation in weighted least-squares proofing and generalizing ad hoc equations from the literature. For sparse intensity distributions in non-natural images, a modified image model is presented. Evaluations were done in the newly developed C++ framework volumetric, artificial, and natural image lossless coder (Vanilc), which can compress a wide range of images, including 16-bit medical 3D volumes or multichannel data. A comparison with several of the best available lossless image codecs proofs that the method can achieve very competitive compression ratios. In terms of reproducible research, the source code of Vanilc has been made public.
使用后向自适应最小二乘法或加权最小二乘法估计预测系数的逐像素线性预测,目前是无损图像压缩的最先进方法之一。虽然当前的研究集中在要传输的像素的平均强度预测上,但要实现最佳压缩,需要对所有可能的强度值进行出现概率估计。除了常见的启发式方法外,我们还展示了如何从(加权)最小二乘训练区域中推导出预测误差方差估计,以及如何基于自回归图像模型构建完整的概率分布。对图像平稳性特性的分析还进一步推导出了加权最小二乘证明中权重计算的新公式,并推广了文献中的特定方程。对于非自然图像中的稀疏强度分布,提出了一种改进的图像模型。评估是在新开发的 C++框架 volumetric、artificial 和 natural image lossless coder(Vanilc)中进行的,该框架可以压缩各种图像,包括 16 位医学 3D 体数据或多通道数据。与几种可用的最佳无损图像编解码器的比较证明,该方法可以实现非常有竞争力的压缩比。在可重复研究方面,Vanilc 的源代码已经公开。