Suppr超能文献

利用形状记忆衬底诱导的显著应变对L10-FePt薄膜的电子结构和相关磁性进行非挥发性调制。

Nonvolatile modulation of electronic structure and correlative magnetism of L10-FePt films using significant strain induced by shape memory substrates.

作者信息

Feng Chun, Zhao Jiancheng, Yang Feng, Gong Kui, Hao Shijie, Cao Yi, Hu Chen, Zhang Jingyan, Wang Zhongqiang, Chen Lei, Li Sirui, Sun Li, Cui Lishan, Yu Guanghua

机构信息

Department of Materials Physics and Chemistry, University of Science and Technology Beijing, Beijing 100083, People's Republic of China.

State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing 102249, China.

出版信息

Sci Rep. 2016 Feb 1;6:20199. doi: 10.1038/srep20199.

Abstract

Tuning the lattice strain (εL) is a novel approach to manipulate the magnetic, electronic, and transport properties of spintronic materials. Achievable εL in thin film samples induced by traditional ferroelectric or flexible substrates is usually volatile and well below 1%. Such limits in the tuning capability cannot meet the requirements for nonvolatile applications of spintronic materials. This study answers to the challenge of introducing significant amount of elastic strain in deposited thin films so that noticeable tuning of the spintronic characteristics can be realized. Based on subtle elastic strain engineering of depositing L10-FePt films on pre-stretched NiTi(Nb) shape memory alloy substrates, steerable and nonvolatile lattice strain up to 2.18% has been achieved in the L10-FePt films by thermally controlling the shape memory effect of the substrates. Introduced strains at this level significantly modify the electronic density of state, orbital overlap, and spin-orbit coupling (SOC) strength in the FePt film, leading to nonvolatile modulation of magnetic anisotropy and magnetization reversal characteristics. This finding not only opens an efficient avenue for the nonvolatile tuning of SOC based magnetism and spintronic effects, but also helps to clarify the physical nature of pure strain effect.

摘要

调节晶格应变(εL)是一种操纵自旋电子材料的磁性、电子和输运特性的新方法。由传统铁电或柔性衬底在薄膜样品中可实现的εL通常不稳定且远低于1%。这种调节能力的限制无法满足自旋电子材料非易失性应用的要求。本研究应对了在沉积薄膜中引入大量弹性应变的挑战,从而实现对自旋电子特性的显著调节。基于在预拉伸的NiTi(Nb)形状记忆合金衬底上沉积L10-FePt薄膜的精细弹性应变工程,通过热控制衬底的形状记忆效应,在L10-FePt薄膜中实现了高达2.18%的可控且非易失性晶格应变。如此水平的引入应变显著改变了FePt薄膜中的电子态密度、轨道重叠和自旋轨道耦合(SOC)强度,导致磁各向异性和磁化反转特性的非易失性调制。这一发现不仅为基于SOC的磁性和自旋电子效应的非易失性调节开辟了一条有效途径,还有助于阐明纯应变效应的物理本质。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f533/4735331/5f4b33047e09/srep20199-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验