Jin Bo, Zhao Yifan, Hao Shiying, Shin Andrew Young, Wang Yue, Zhu Chunqing, Hu Zhongkai, Fu Changlin, Ji Jun, Wang Yong, Zhao Yingzhen, Jiang Yunliang, Dai Dorothy, Culver Devore S, Alfreds Shaun T, Rogow Todd, Stearns Frank, Sylvester Karl G, Widen Eric, Ling Xuefeng B
HBISolutions Inc., Palo Alto, CA, 94301, USA.
Department of Surgery, Stanford University, S370 Grant Building, 300 Pasteur Drive, Stanford, CA, 94305, USA.
BMC Emerg Med. 2016 Feb 3;16:10. doi: 10.1186/s12873-016-0074-5.
Estimating patient risk of future emergency department (ED) revisits can guide the allocation of resources, e.g. local primary care and/or specialty, to better manage ED high utilization patient populations and thereby improve patient life qualities.
We set to develop and validate a method to estimate patient ED revisit risk in the subsequent 6 months from an ED discharge date. An ensemble decision-tree-based model with Electronic Medical Record (EMR) encounter data from HealthInfoNet (HIN), Maine's Health Information Exchange (HIE), was developed and validated, assessing patient risk for a subsequent 6 month return ED visit based on the ED encounter-associated demographic and EMR clinical history data. A retrospective cohort of 293,461 ED encounters that occurred between January 1, 2012 and December 31, 2012, was assembled with the associated patients' 1-year clinical histories before the ED discharge date, for model training and calibration purposes. To validate, a prospective cohort of 193,886 ED encounters that occurred between January 1, 2013 and June 30, 2013 was constructed.
Statistical learning that was utilized to construct the prediction model identified 152 variables that included the following data domains: demographics groups (12), different encounter history (104), care facilities (12), primary and secondary diagnoses (10), primary and secondary procedures (2), chronic disease condition (1), laboratory test results (2), and outpatient prescription medications (9). The c-statistics for the retrospective and prospective cohorts were 0.742 and 0.730 respectively. Total medical expense and ED utilization by risk score 6 months after the discharge were analyzed. Cluster analysis identified discrete subpopulations of high-risk patients with distinctive resource utilization patterns, suggesting the need for diversified care management strategies.
Integration of our method into the HIN secure statewide data system in real time prospectively validated its performance. It promises to provide increased opportunity for high ED utilization identification, and optimized resource and population management.
评估患者未来再次前往急诊科(ED)就诊的风险,可为资源分配提供指导,例如当地的初级医疗保健和/或专科医疗资源,以更好地管理急诊科高就诊率患者群体,从而提高患者生活质量。
我们着手开发并验证一种方法,以估算患者从急诊科出院日期起未来6个月内再次前往急诊科就诊的风险。利用缅因州健康信息交换中心(HIE)HealthInfoNet(HIN)的电子病历(EMR)诊疗数据,开发并验证了一个基于集成决策树的模型,该模型根据与急诊科诊疗相关的人口统计学和EMR临床病史数据,评估患者未来6个月内再次前往急诊科就诊的风险。为了进行模型训练和校准,我们收集了2012年1月1日至2012年12月31日期间发生的293,461次急诊科诊疗的回顾性队列数据,以及相关患者在急诊科出院日期前1年的临床病史。为了进行验证,我们构建了一个前瞻性队列,包含2013年1月1日至2013年6月30日期间发生的193,886次急诊科诊疗。
用于构建预测模型的统计学习方法识别出152个变量,这些变量包括以下数据领域:人口统计学分组(12个)、不同的诊疗历史(104个)、护理机构(12个)、主要和次要诊断(10个)、主要和次要治疗程序(2个)、慢性病状况(1个)、实验室检查结果(2个)以及门诊处方药(9个)。回顾性队列和前瞻性队列的c统计量分别为0.742和0.730。我们分析了出院后6个月按风险评分划分的总医疗费用和急诊科就诊情况。聚类分析确定了具有独特资源利用模式的高风险患者离散亚组,这表明需要多样化的护理管理策略。
将我们的方法实时整合到HIN安全的全州数据系统中,前瞻性地验证了其性能。它有望为识别高急诊科就诊率患者提供更多机会,并优化资源和人群管理。