Leliaert Jonathan, Van de Wiele Ben, Vansteenkiste Arne, Laurson Lasse, Durin Gianfranco, Dupré Luc, Van Waeyenberge Bartel
Department of Solid State Sciences, Ghent University, Krijgslaan 281/S1, 9000 Ghent, Belgium.
Department of Electrical Energy, Systems and Automation, Ghent University, 9000 Ghent, Belgium.
Sci Rep. 2016 Feb 4;6:20472. doi: 10.1038/srep20472.
The motion of domain walls in magnetic materials is a typical example of a creep process, usually characterised by a stretched exponential velocity-force relation. By performing large-scale micromagnetic simulations, and analyzing an extended 1D model which takes the effects of finite temperatures and material defects into account, we show that this creep scaling law breaks down in sufficiently narrow ferromagnetic strips. Our analysis of current-driven transverse domain wall motion in disordered Permalloy nanostrips reveals instead a creep regime with a linear dependence of the domain wall velocity on the applied field or current density. This originates from the essentially point-like nature of domain walls moving in narrow, line- like disordered nanostrips. An analogous linear relation is found also by analyzing existing experimental data on field-driven domain wall motion in perpendicularly magnetised media.
磁性材料中畴壁的运动是蠕变过程的一个典型例子,通常由拉伸指数速度 - 力关系来表征。通过进行大规模微磁模拟,并分析一个考虑了有限温度和材料缺陷影响的扩展一维模型,我们表明这种蠕变标度律在足够窄的铁磁条带中会失效。相反,我们对无序坡莫合金纳米条带中电流驱动的横向畴壁运动的分析揭示了一种蠕变状态,其中畴壁速度与外加场或电流密度呈线性依赖关系。这源于在狭窄的、线状无序纳米条带中移动的畴壁本质上的点状性质。通过分析垂直磁化介质中场驱动畴壁运动的现有实验数据,也发现了类似的线性关系。