Suppr超能文献

用于焦点堆叠摄影的鲁棒全聚焦超分辨率。

Robust All-in-Focus Super-Resolution for Focal Stack Photography.

出版信息

IEEE Trans Image Process. 2016 Apr;25(4):1887-97. doi: 10.1109/TIP.2016.2523419. Epub 2016 Jan 28.

Abstract

We present an unconventional image super-resolution algorithm targeting focal stack images. Contrary to previous works, which align multiple images with sub-pixel accuracy for image super-resolution, we analyze the correlation among the differently focused narrow depth-of-field images in a focal stack to infer high-resolution details for image super-resolution. In order to accurately model the defocus kernels at different depths, we use a cubic interpolation to parameterize the projection of defocus kernels, and apply the radon transform to accurately reconstruct the defocus kernels at arbitrary depth. In the image super-resolution, we utilize the multi-image deconvolution method with a l1 -norm regularization to suppress noise and ringing artifacts. We have also extended the depth-of-field of our inputs to produce an all-in-focus super-resolution image. The effectiveness of our algorithm is demonstrated with the quantitative analysis using synthetic examples and the qualitative analysis using real-world examples.

摘要

我们提出了一种针对焦堆叠图像的非传统图像超分辨率算法。与之前的工作不同,后者通过亚像素精度对齐多个图像来进行图像超分辨率,我们分析了焦堆叠中不同聚焦的窄景深图像之间的相关性,以推断图像超分辨率的高分辨率细节。为了准确地模拟不同深度的离焦核,我们使用三次插值来参数化离焦核的投影,并应用 Radon 变换来准确地重建任意深度的离焦核。在图像超分辨率中,我们利用多图像反卷积方法和 l1-范数正则化来抑制噪声和振铃伪影。我们还扩展了输入的景深以生成全聚焦的超分辨率图像。我们的算法的有效性通过使用合成示例进行的定量分析和使用真实示例进行的定性分析得到了证明。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验