Hönigschmid Peter, Frishman Dmitrij
Department of Bioinformatics, Technische Universität München, Wissenschaftszentrum Weihenstephan, Maximus-von-Imhof Forum 3, 85354 Freising, Germany.
Department of Bioinformatics, Technische Universität München, Wissenschaftszentrum Weihenstephan, Maximus-von-Imhof Forum 3, 85354 Freising, Germany; Helmholtz Zentrum Munich, German Research Center for Environmental Health (GmbH), Institute of Bioinformatics and Systems Biology, 85764 Neuherberg, Germany; Laboratory of Bioinformatics, RASA Research Center, St Petersburg State Polytechnical University, St Petersburg 195251, Russia.
J Struct Biol. 2016 Apr;194(1):112-23. doi: 10.1016/j.jsb.2016.02.005. Epub 2016 Feb 3.
Accurate prediction of intra-molecular interactions from amino acid sequence is an important pre-requisite for obtaining high-quality protein models. Over the recent years, remarkable progress in this area has been achieved through the application of novel co-variation algorithms, which eliminate transitive evolutionary connections between residues. In this work we present a new contact prediction method for α-helical transmembrane proteins, MemConP, in which evolutionary couplings are combined with a machine learning approach. MemConP achieves a substantially improved accuracy (precision: 56.0%, recall: 17.5%, MCC: 0.288) compared to the use of either machine learning or co-evolution methods alone. The method also achieves 91.4% precision, 42.1% recall and a MCC of 0.490 in predicting helix-helix interactions based on predicted contacts. The approach was trained and rigorously benchmarked by cross-validation and independent testing on up-to-date non-redundant datasets of 90 and 30 experimental three dimensional structures, respectively. MemConP is a standalone tool that can be downloaded together with the associated training data from http://webclu.bio.wzw.tum.de/MemConP.
从氨基酸序列准确预测分子内相互作用是获得高质量蛋白质模型的重要前提。近年来,通过应用新型共变算法在该领域取得了显著进展,这些算法消除了残基之间的传递进化联系。在这项工作中,我们提出了一种针对α-螺旋跨膜蛋白的新接触预测方法MemConP,其中进化耦合与机器学习方法相结合。与单独使用机器学习或共进化方法相比,MemConP的准确性有了显著提高(精确率:56.0%,召回率:17.5%,马修斯相关系数:0.288)。该方法在基于预测接触预测螺旋-螺旋相互作用时,精确率也达到了91.4%,召回率为42.1%,马修斯相关系数为0.490。该方法分别通过对90个和30个实验三维结构的最新非冗余数据集进行交叉验证和独立测试进行训练和严格基准测试。MemConP是一个独立工具,可以从http://webclu.bio.wzw.tum.de/MemConP连同相关训练数据一起下载。